
AD AOS5 902 SOFTECH INC WALTHAM MASS FIG 9/2
OPERATIONAL SOFTWARE CONCLPT OSC EXECUTIVE EVALUATIONIR(FINOttj——ElC(U)
AUG 77 N 6 WILLOUGHBY . C K HITCHON F33615—76—C—1 192

UNCLASSIFIED 1025—3 AFAL —TR—77—87 NI.

--

p

•i~


~~~~‘~~~~~~~~~~ T TTTT~~~ ....i~~:T~__:T 
~~~~~~~~~~~~~~~~~~~~ L~~JN_*~~~

SECURITY CLAA ~ Ic lCAT ,ON O~ THIS PAGE (USli., 0.1. Enl.,.d)

PORT DOCUMENTATION PAGE READ 1NS~ R~~ TIONS
BEFORE COMPI.E1Th0 FORM

877\
_ _ _ _ _

_ _

/ 12. GOVT ACCE SSION NO 3. RECIPIENT S C*TA I. OG NUMUER

SubI•U.) t..JJI * sr fi-...- w.pJlI,..

(~~~~ RATI0NAL .$OFTWARE~~DNCEPT ~‘l’~~ t’e~ ?t.Ai I)
~

S~~P J.m , Q~ _______

~J(ECUTIgt~yALUATThN/REFINEMEP1T. .~~rsnrsr~~u,I0

CONTRACT OR ~~~~~~~ ~ —

~ ~~~~~~~~~ G.)W i UoughbY ~~~ Carl K./Hi tchon j
~

~~~i6l5-l6-C-llg2 
_ _ _ _ _ _ _

N A M E  AND ADDRESS 10. PROGR~~~~~LEMEHT~ PROJ ASK

Soflech, Inc .

Wa ltham 1 Massachusetts 02154 _____ 
~~~~~~~~~~~~~~~~~~~~~ 

]S. PEI~FORMING ORGANI ZATIOJI ARIA ~~~~~~~~~~ NI’ NUMB

460 Totten Pond Road 6220U 3 05,14

‘I CONTROLLING OFFICE N A M E AN D ADDRESS 12. REPORT DATE

Air Force Avionics Laboratory June 1977
System Technology Branch (MI) IS NUM BER O~ PAGES145Wrluht-P~ttPrsnn AFR S Ohm 4~ 4i~ ___________________________

AD 53(11 dIU.r,& V,u CcnIrollM Otftc.) IS. SECURIT’I CLASS. (.1 Iii. r.port)

Unclassified
II MONTTORING AGENCY NAME

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

11~. O E C LASS,rS CAT ,ON /DOWNGNAr .sNO
SCHEDULE

II. f)ISTR$•UYION STATEMENT (~I thS. R.p.rS)

Approved for ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~

IT . DISTRIBUTION STATE MENT (of (A. L~.. ~ -i r~ s , ,~oo,

15. SUPPLEMENTARY NOTES

19. K EY W ORO S (Conltau. on ,.~.r,. aid. II n.c.e.ary wd Id.nUly by block n.~ .b.r)

Modular Software Avionics Software
Directed Flow Graphs System Software
Support Software Executive Software
Higher Order Language Software Design

20 ABSTRAC T (Continua on ,, ~.r.. .Id. Si n.c...avy .id Sd.nflfr by block m , b t)

) Ji This report describes executives built using the Operational Software Con-
cept (OSC). These executives are designed to operate on a federated net-
work of four DAIS processors connected by DAIS multiplex data busses. In
fact, the executives and applications , represented by stubs , have been im-
plemented on a two processor system.
The applications supported by the executives are specified using Directed
Flowgraphs (DFG) as described in Technical Report AFAL-TR-74-168. Volume Ii

DD ~~~~~~~~ 14?3t. EOST ION Or ‘ NOV AS IS OBSOLETE - 
.. .

SECURITY CLA SSI~~ICAT ~ON OF THIS PAGE (~~~sn Pal. Rni.c d)

7 ~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _



_______ -

. . - ~~~~~~~~~~~~~~~~~~~~~~~~ ~ •—. °,~‘ ~~~~ —.—_._ -— -

4

SECURITY CLASIIPICATIOW OP THIS PASIf1~~.. D.1a ~~~~~~~

from OSC Phase I. It Is assumed that the reader of this report will be
familiar wi th the contents of the above-mentioned document.

The executives have been built based on the design presented in the OSC Com-
puter Program Development Specification , Technical Report for April 1976 to
September 1976. The basel ine executives were coded on the DAIS laboratory
PDP-lO , primarily In J731 , providing ful l generality for the DFG specified
application . The DFG was provided by AFAL as representative of a DAIS
mission. These executives had time overheads of 37 .1% and 41.0% and space
overheads of 36.5% and 33.7% for processors 0 (the head processor) and 1 ,
respectively. The baseline executives were tuned primarily for High Order
Language (HOL) inefficiencies , HOL deficiencies and generality reduction
for the specific DFG. The resulting final tuned executives had time over-

\\ / heads of 11.1% and 11.3% and space overheads of 22.1% and 19.2% for proces-
\ \ sors 0 and 1 . respectively. These overhead figures and the detailed

statistics presented In the report represent the state of the executives on
20 December 1976 and are based on the DAIS processor described in Specifica-
tion Number MN255R817-1 of September 1976 and the DAIS multiplex data bus
described In Specification Number SA3O1300B-15 of March 1976.

L -

~~~~ This report Is divided into three sections and an Appendix. The first sec-
tion describes the process of building an executive based on a DEG. The
second section descrIbes the parameters affecting system performance that
are associated wi th the DFG supported by the executives. The third section
presents the baseline executive statistics , tuning method descriptions and
statistics for the fina l tuned executive. The Appendix provides program
listings of intermediate tuning results of the final tuned executives .

I

SECURIT Y CLA SSI r ICAT ION OF Tp.ts RA4II’$S’.n l).t.R. l.,.d)

~~~~~~~~~~~~~



:_ ~~~~or. - 
~~ ~ 8~~~~~ ~~~~~~~ -~ .-.~---~~~~~ 

.—-—-~~ 

~~~~~~~~~~~~~~~

FORE WARD

This final technical report was prepared by Softech ,
Inc., Waltham , MA and covers work performed under Contract

F33615-76-C-1192 during the period September through December

1976. The work was funded under Pro3ect 2003 , Task 05, Wor kr Unit l~ by the Air Force Avionics Laboratory , Wright-Patterson
AFB , Ohio L4 5L 4 3 3 . The Air Force contract monitors were Mark

A. Pitts and Ronald Szkody.

Significant contributors to this report include C. Hitchon,
D. Ffdw , and M . Willoughby .

‘ 8

-
.

8
~~~ ~~

• . s Ill C•)

~ : “ ‘.
~~

‘
~ 

~~

Cl AL

.111

- 
- - -



1~ - ~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~,

TABLE OF CONTEN TS

Section Page

BUILDING AN EXECUTIVE 1
1.1 Construction of Baseline ExecutIves 1

1. 1. 1 File Name Conventions 2
1.1. 2 Submit Files 3
1.1.3 Executive Constr uction 4

1. 2 Construction of the Directed Flowgraph Model 5
1.2 . 1 Approach 5
1. 2 . 2 Reduction of DFG Complexity 6

1. 2. 2. 1 Preemption Reduction 7
1. 2 .2. 2 Combining Tasks 12
1.2.2. 3 Serlalizers 14
1. 2 . 2. 4 Complex DFG Constructs 15
1.2 .2 . 5 Partitioning 19
1.2 .2 .6 Other Possible 19

Simplifications
1. 2. 3 Final DFG Model 20

1.2 .3.1 Key to DFG Modets 22
1.2 .3.2 Processor 0 DFG Model 26
1.2 . 3. 3 Processor 1 DFG Model 29
1.2.3.4 Correspondence of DFG 30

Model to Formal DFG

II SYSTEM PARAMETERS 32
2. 1 Processor 0 System Parameters 33

2.2 Processor 1 System Parameters 36

III TUNING THE EXECUTIV E 39

3. 1 Baseline Executive Statistics 40

3.1~,1 ITC Baseline Statistics 42
3.1.1.1 Approach 42
3.1.1.2 Definition of XTC 42

Activities
• 3. 1. 1. 3 ITC Baseline Detailed 44

Timing Statistics
3. 1. 1. 4 ITC Baseline DetaIled 48

Space Statistics
3. 1. 1. 5 ITC Sensitivity Analysis 52

3.1. 2 TIM Baseline Statistics 53
3.1.2 .1 Approach 53
3.1. 2. 2 Definition of TIM 54

Activities
3.1. 2. 3 TIM Baseline Detailed 55

Timing Statistics
3. 1. 2 . 4 TIM Baseline Detailed 57

Space Statistics
3.1. 2 . 5 Sensitivity Analysis 58

V 
-

- 

PRECIDING PM~~ RLA~E

- -  -—-~~~~~,~~~— ..“-~~~~~~ — ..— - -a 



T-
~~~~~~~~~~~~~~~~~~~~~

_.-8 . .-

~~

-- -- -- —

~

-

~

- -

~~

—

~~~

--
~~ 

---~~~~
. ——a-~~~

- 
- - .--— 

fl

TABLE OF CONTENTS (Cont inued)

Section Page

III TUNING THE EXECUTIV E (Continued)
3. 1 Baseline Executive Statistics (Continued)

3. 1. 3 DAC Baseline Statistics 59
3.1. 3.1 Approach 59
3. 1. 3. 2 Definition of DAC 59

Activities
3.1. 3.3 DAC Baseline Detailed 61

Timing Statistic s
3.1. 3.4 DAC Baseline Detailed 63

Space Stat is t ics
3.1. 3.5 DAC Sensitivity Analysis 65

3.1 .4  SCH Baseline Statistics 66
3.1. 4.1 Approach 66
3. 1. 4. 2 Definition of Activities 67
3.1. 4. 3 SCH Baseline Detailed 68

Timing Sta tistics
3.1. 4. 4 SCH Baseline Detailed 69

Space Statistic s
3. 1. 4. 5 SCH Sensitivity Analysis 70

3.1. 5 DTF Baseline Statistics 71
3.1. 5.1 Approach 71
3. 1. 5. 2 Definition of DTF 72

Activities
3.1.5. 3 DTF Baseline De tailed 73

Timing Statistic s
3.1. 5 . 4 DTF Baseline Detailed 75

Space Statistics
3. 1. 5. 5 Sensitivity Analysis 76

3.1. 6 MSM Baseline Statistics 77
3.1. 6.1 Approach 77
3. 1. 6. 2 Definition of MSM 77

Activitie s
3.1. 6 . 3 MSM Baseline Detailed 78

Timing Statistic s
3. 1. 6 . 4 MSM Baseline Detailed 79

Space Statistic s
3. 1. 6 . 5 Sensitivity Analysis 79

3. 1. 7 DSP Baseline Statistic s 80
3.1.7.1 Approach 80
3. 1. 7. 2 Definition of DSP 81

Activities
3.1.7.3 DSP Baseline Detailed 82

Timing Statistics
3. 1. 7 . 4 DSP Baseline Detailed 84

Space Statistics
3. 1. 7. 5 DSP Sensitivity Analysis 85

vi

__ ____ _;s_

~ 

— — —



“V ~
- —

~~~~~

--

~~~

— ...— ..-- . , - ..
- -

~
--~~--~-~~- - ~~~~~~~~~ ‘ - - -. - - 1.w *.-.... _ . .  ~~~~~~~

TABLE OF CONTENTS (Continued)

Section Page

III TUNIN G THE EXECUTIVE (Continued)

3 . 1 Baseline Executive Statistics (Continued) 85

3. 1. 8 SSM Ba seline Statistic s 85
3. 1. 9 MPL Baseline Statistics 85
3.1.10 Bus Traffic 85

3.1.10.1 Processor 0 86

* 3.1.10. 2 Processor l 86
3.1.10.3 Interprocessor Bus Traffic 86

3. 2 Tuning for HOL Inefficiencies 87

3. 2.1 Overview 87
3. 2.2 Examples 87

3.2 .2 .1 CLOCKQ 87
3.2.2 .2 SEND 88
3. 2 . 2 . 3 QUEUE and DQUEUE 88

3.2. 3 Summary 89

3. 3 Tuning by Reducing Generality 89

3. 3. 1 OvervIew 89
3. 3.2 Exam ples 89

3. 3.2 .1 CLOCKQ 89
3. 3.2 .2 SEND 89
3. 3.2. 3 QUEUE and DQUEUE 90

3. 3. 3 Summary 90

3. 4 Tuning for HOL Language Deficiencies 91

3. 4. 1 Overview 91
3.4.Z Examples 91

3.4.2.1 CLOCKQ 91
3. 4 .2 .2  SEND 92
3. 4. 2. 3 QUEUE and DQUEUE 92

3. 4. 3 Summary 93

3. 5 Final Tuning 94

3. 5.1 Overview 94
3. 5. 2 Final Tuning Description 95

3. 6 Final Tuned Executive 97

• -3 . 6. 1 ITC Final Tuned Statistics 99
3. 6. 1. 1 ITC Tuning Approach 99
3.6.1.2 Functional Differences 100

with Baseline
3.6.1.3 ITC Final Tuned Detailed 101

Timing Statistics
3. 6 .1. 4 ETC Final Tuned Detailed 103

Space Requirements
3. 6 . 1 . 5  ITC Sensitivity Analysis  105

_

vii 

—

- —~ — - - -- ~~~~~~~ - - - _________



r -

~~~~~~~  
_ _ _ _

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE OF CONTENTS (Cont inued)

Section Pa~~

III TUNING THE EX ECUTIV E ( Co n tin u e d )

~~. b Final Tuned Execut ive  (Con t inued )

3 . ~~~. ~ TIM Final Tuned S tat i s t i c s  I Ot ’
4 . b . 2 . 1 TIM Timing Approach  I O~
~~. ~~~. .~~. 2 Funct iona l  D i f f e re n ce s  1 07

wi th Basel ine
3. ~i. 2 . 3 Tfl~vI Fina l Tuned 1)eta~led 1 07

Timing Sta t i s t ics
3 . o . 2 .4 TIM Final Tuned Deta i l ed  105

Space Sta t i s t i cs
4 . ~~~. 2 . 5 TIM Sens i t iv i ty  A n a ly s i s  i

3. ~~~. 3 DAC Final Tuned S ta t is t i cs  1 0’)
3. t~ . 3. 1 DAC Tuning Approach  I 0’)
3 . ~. 3. 2 Functional D i f f e r e n c e s  I l  0

w ith Ba seline~
~~. ~‘. 3 . 1)AC Final Tuned I )eta i led 110

Timing Statistics
3 . 6 . ~~. 4 DAC Final Tuned Detailed 111

Space Statistic s
3 . t . 3. DAC Sens i t i v i t y  An a l y s i s  11

3. o 5 4 SCH Fina l Tuned S ta t i s t i cs  l1~
3 . ~. 4 . 1 SCH Tuning Approach 11~
3 . t-~. 4 . 2 Functional D i f f e r e n c es  11
~~. ~~~ 4. SCH Final Tuned Deta i led  11 4

Timing S t a t i s t i cs
3 . I ’ . 4. 4 5(11 Final Tuned D et ai led  i i  ~

Space S t a t i s t i c s

~. b~ 4. ‘~ 5(11 Sensitivit y A n a lv s t ~ I I  ‘

~~. b . ~ DTF Final Tuned S t a t i s t i c s  1 1 1 8  —

3 . t’ . ~~~. 1 Tuning A pproach i i  7

~. b . 5 . 2 Functional D i f f er e n c e s  117
with Baseline

3 . ~. ~. 3 PTF Fina l Tuned Det a i l ed  115
Timing S t a t i s t ic s

~. e . ~. 4 DTF Final T n d  D eta i l ed  12 0
Space R e q u i r e me n t s

3 . t . 5. 5 DTF Sensi t iv i ty  Ana lys is  I ~~~~

3. 6 . ~ N1SM Final Tuned S ta t i s t i cs  I ~ 3
3. t~. b . 1 Functional  Di f fe rences  I ~

with Baseline
t~ . 6 . 2 Tuning A pproach  12 -3

~. b . ~. MSM Fina l Tuned Detailed 124
Ti ml S t a t i s t  ii~ s

% . I . I. . 4 NI SM 1’ m l  I’ une i l  Detailed 1 .~ 1
Sp a . c  S t a t i s I t ~~s

~~. ‘. t ’ . 5 S r n s i t i v i t v  . \ na lv s i s  I .‘ l

•1 

v~~~~~t

— 

- -w -



— — —- --—---- - - -
: —*—

~~~
- -. .~~~

_ _
~~~~~~~~

- -
~~~~~~~~~~~~~

- -
~~

-

TA 141 F ~ V (‘ON TF:NTs (C o n t in u e d)

Section Page

iii TUN IN G Ti IF EX FC(ITW F (C on t i n u e d)
1’in.i 1 Tuned F xee Ut lv e (Con t inued)

~~. ‘. 7 DSP Final Tuned Statistics 1 25

~. ‘. 7. 1 DSP Tuning Approach 125
4 . o . 7. 2 Funct ional D i f fer en c e ~ 1 2
~~. c’ . 7 . DSP Fina l Tuned Timing I 2t~

f S ta t i s t i c s
. ~~~. 7. 4 1)511 Final Tuned Deta i led I 28

Space Statist ics
. e . 7 . ~ DSP S e n s i t i vi t y Ana l y s t s 12’)

~. C’ . S SSM Final Tuning S t a t i s t ic s

~. t~ . ‘) N I P I , Final Tuning Statistics 12’)

~. C’ . 10 Final Tuned Bu s Traffic i 2°

Con clus Ions 1 2’)

~.7.1 Statistical Reduction Allocated by 12’)
Funct ion Cluster

~. 7. 2 S ta t i s t i c a l Reduc tion Allocated by 1~~4
T~tn l t g Method

Appendix FX F C (T T I V F TUNING V X A M P 1 .VS A - I
A

Appendix T U NIN G TI1F ~ DAi S MISSION IWG 14-1
ii

Appendix AS SIGNMFNT OF 14 1’S S l’BAPDR FSSFS C 1
(

-.

ix

—:
~-i — — — ~-~~~i~’- ~~~~~~~~

‘-
~~~~~~~~~~~~~ -

~~st~
_ _ 

~~~~---_  ~~~~~~ -~~--- - -


.~~~~~~~r~~___

- -~~~~ ~~r - ~~~~~~~~~~~~~~~~~
_

~ $~~~ ~~~~~~~~~~ _~~~~~-
-_~~~—-. - - —-----------.- --~ —~-—~~ —--—— —

LIST OF ILLUSTRATIONS

Figure No . Page

la FILE NAME CONVENTIONS 2

lb EFFECT OF PREEMPTION ON DATA 10
ACCESS CONTROL

2 BASELIN E EX ECUTIVE TIMING STATISTICS 41

3 BASELINE EXECUTIVE SPACE STATLSTICS 41

4 FINAL TUNED EXECUTIV E TIMING 98 - -
.

STATISTICS

5 FINAL TUNED EX ECUTIV E SPACE 98
STATISTICS

6 PR OCESSOR 0 TIM E OV ERHEA D 130

7 PROCESSOR O SPACE OVERHEA D 131

8 PROCESSOR 1 TIME OV ERHEA D 132

9 PROCESSOR 1 SPACE OV ER H EAD 133

x l

- -
- — - - - - - ~~~~~~~~~~~~~ . .-- —~~ --~~~~~~~-~ - -~- ~~ -‘~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
_
~~~~~~~~

_
~
i _

~ ~~~~~~ ~~~~~~~~~

—--
~~

—- --—--- - -
~~
- - - — - - -

~

- - - — -. . — .

Section i

BUILDING AN EX ECUTIVE

Bu ilding a baseline (untuned) OSC execut ive for a par t icular mis-

sion is a two-step process. Firs t , the formal Directed Flowgraph (DFG) -

which specifies the mission must be studied , simplified if possible . and

conver ted into an executive DFG model which can be t rans la ted di rect ly

into ~tn executive data set. This process is described In detail in Section

1. 2.

In the second step, the resu lting executive data set is edited into

the appropr ia te COPY and COMPOOL source files as preset data . The

base line mission executive is then created by performing the proper se-

quence of compilations and link edits . This process is described in detail

in Section 1. 1.

3 The resulting executive is fully functional but untuned . The pro-

cesses of tuning and analysis of the results a re described in detail in

Sect ion 3.

1. 1 Construction of Baseline Executives

The baseline executives for processor 0 and processor 1 can

4 be created from files resid ing on PPN {iiii , 3511 of the DAIS PDP -1O .

Special file naming convent ions have been used to aid in the identification

of fi les and cons t ruc t ion of the execut ives . These conventi ons will be

described in the first subsection.

The creation of an executive is a th ree-s tep process. Firs t ,
all the required source files are moved to a separate PPN. Then they

are compiled , assembled and reformatted. Finally, they are linked to

create the desired executive. The executives a re named CSCO .LDA

for processor 0 and OSC 1.LDA for processor 1. Each of these processes

is aided by a set of submit files on PPN[11l1 .4201. These fi les a re pre-

pared batch jobs to make the process easier and more reliable. The

second subsection describes the necessary submit files , the final sub-

section desc r ibes how th ey a r e used to create the execut ive .

1

I f
_ _ _ _

_ _

_ _ _ _ _ J

- _______________________________

1. 1. 1 File Name Conventions

Each file name consists of two part s separated by a dot . The

name before the dot is used to Indicate the type of information it contains;
that is , It Indicates whether the file contain! executive procedures , data
declarations, procedure declarations or initialization procedures. The
name after the dot , the extension , Indicates the executives the file Is used
to build , and whether It is a J731 program , DAIS assembly language pro-
gram , copy file , COMPOOL source or preprocessed COMPOOL. A
summary of the conv entions Is given In Figure la . The use of a “ ?“ wtthln
a name indicates that the appropriate letter is substituted for each “ ? “ to
name the requested file . For example , the designation ? ? ? IPD indicates
that names such as ITCTP D, DACIP D , and MSMIP D arc valid .

Common Processor 0 Processor 1File Type Name Name Name

J731 programs . J73 . J70 . J7 1

DAIS Assembl y
language programs • DAL • DAO . DA 1

copy file s .CPY . CPO . CPI

COMPOOL source files . Cl’S . CSO . CS1

Preprocessed COMPOOL
(one for each CCMPOOL fi le) . CMP . CMP . CMP

Executive procedures ? ? ? P R C . ? ? ? P R C . ? ? ? P R C.

Initialization procedures ? ? ? INT. ? ? ?INT. ? ? ?INT .

Data declarations ? ? ?D C L. ? ? ? DCL. ? ? ?DC L.

Separate copy of
initial data ? ? ? IDT. ? ? ? IDT. ? ? ? IDT.

External procedure
declarations ? ??EPD. ? ? ? E P D . ? ??EPD.

Internal procedure

L

declarations ? ? ? IPD. ? ? ?IPD. ? ? ?IPD.

Fi gure la . FILE NAME CONVENTIONS
, 2

_
_ _ _ _ _ _ _ _ _ _

_______ ~~~~~~

_____ - -. ‘~~~~~
_

-

_ _ _ _ _ _

-
~~

--

~~~~~~~
-
~~——‘ ----

~~~~~~
--- -‘-—-

• —•— ~~~--— --—
~~~~~~~~~ .L-.....~-— -- 

~~~~~~~ ‘... — — - - -  - - - -

1. 1. 2 Submit Files

A set of eubmit file! resides on PPN[1111 420] to assist in con-

structing an executive. The following list names and describes each

of them.

MVOSCO.CTL - copy all file. in PPN [1111. 351) needed
to create the processor 0 executive.
Rename all . CP O , . CSO , . 370 and • DAO
extension , to .CPY , .CPS , .373 and .DA L.

MVOSC I .CTL - copy all file. in PPN [1111 351] needed
to create the processor 1 execut ive.
Rename all .CP 1 , .CSI , .371 and . DA1
extensions to .CPY , .CPS , .373 and .DAL.

PRC.CTL - compile all executive 373 programs.

PD.CTL - comp ile all procedur e declaration COMPOOL
file..

CMP.CTL - compile all COMPOO L file, t hat are not
procedure declaration..

FMT .CTL - r eformat all executive .REL files int o
.DA T files

ASSMBLCTL - assemble all executive DA IS A~~aembly
Language files.

LINK O .CTL - create the processor 0 execut ive OSCO . LDA.

LIN K 1.CTL - create the processor 1 executive OSC 1.LDA.

• ~~~
.-‘-

~~~~~~~~~~~~~~~~ ~~~~~ - - - 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -~~~~ - - - ~~~ - -


~‘.—
- . -

~~~~~
- - —--- -

~~
-- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ rj
- - — - - -——r - - ~— - - • .. - . — .•.-~- .‘.— -~ ‘ • ‘ ‘ ‘~~~

_.__I ~
-

— .

1. 1. 3 Executive Construction
- -

This description will assume the processor 0 executive is being

c reated . The processor 1 executive is created in the same way, with the

appropriate submit files substituted. One executive should be completed

before the next is begun . It is also important that the command s be per-

formed in the order listed to insure that the proper files are used. It is

also important that each command complet e before the next one begins.

The first step in building the executive Is to copy the appropriate

files to a different PPN. This can be done with submit files residing on

[1111,420]. These submit files will copy to whatever PPN the submit

file is on. The following command will copy the necessary files:

• SUBMIT MVOSCO (MVOSC 1)

All of the required source files have now been cop ied. The COMPOOLs

and programs must be compIled and assembled next .

. SUBMIT CMP
• SUBMIT PD
.SUBMIT PR C

SUBMIT ASSMBL

Then the files are reformatted and linked to create the executive.

SUBMIT FMT
SUBMIT LINKO (LINK 1)

The resulting executive will be named OSCO . I ’)A (OSC 1.LDA) .

4

—

~~~ -
~~ 

i~~~- i ~~~ iiE:~ _ _



- ~~ - - --~~~~~—~~~~~~~ ‘ ~ -~~ -- ~~~~• 

-- -- ——

~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~

1. 2 Construction of the Directed Flowgrap h Model

1. 2. 1 Approach

The process of constructing an OSC DFG model begins when the

mission planner has produced a complete specification of the mission ’ s

executive requirements in the form of a formal DFG together with supple-

mentary inforirtatlon . The formal  DF( precisel y de picts all data and

control relationships between the mI..ion ’ s tasks , sources , and sinks.

Supplementary Information provides task execution rates and times ,

data link descri ptions , memory and respon.e r equirement s , and any

other quantitative aspects of system per formance  or resource require-

ment s which may in fluence construction of the executive l)FG model .

Each mission task dep icted on the formal PFG Is considered

as an indivisible unit. The internal operations of these tasks  a re  not

spec ifled in the formal DFG and are , in fact , onl y pertinent in their

effects on the supplementary quantitative information.

The job of the executive builder is to construct an OSC executive

which accurately models the formal  DFG (In that the data and control

flow will be as specified) and which also meets the quantitative requirement s

(auch as execution rates, response times , etc. ) on the target hardware
- I configuration. More specificall y, since the OSC executive Is a table-driven

DFG interpreter , the job of the executive buIlder is to construct a set of

t ab les wh ic h wi ll dr ive  the execu t ive  cor r ec t l y and m eet the  quantitat iv e

requirements.

One approach to this problem is to perform a one-to-one mapping H

of the formal DFG’ s links , nodes , sources , etc. into the corresponding

models supported by the OSC executive, It is quite poss ible that such a

“brute  force ” translation of the formal DFG Into an executive data set

could be performed automatically by a t ransla tor  program driven by a

formalized lingui stic representation of the DFG. This approach has a

ser ious  drawback . A direct t ranslat ion of a relativel y complex DFG may I’
re sult  in an  execut ive  which is  so la r g e  ~ nd slow tha t  space and execut ion

t ime requirement s of the mission ’ s tasks cannot  be met. Moreover, since

such an automat ic  t r ansl a to r  does not exist , .i ted ious , error-prone hand

t r ans l a t ion  must  he pe r form e d .

_ _  

L
‘Ti :



— —-•- - - - ~~~~~~~.- - - . • - • .. — - -—~~~~~ ---~ --

For these reasons, the executive builder may be forced to redi~ce

the complexit y of the DFG prior  to final translation int o an executive data

set. The need to reduce complexity, however , does not negat e the usefu l-

ness of an automatic translator . Even executive data sets produced by

the translator which tu rn  out to be too inefficicnt , can be made useful tools

for debugging the DFG by using task stubs and running virtual clocks at

a slower rate .

1. 2. 2 Reduction of DFG Complexity

The reduction of the complexity of a detailed formal  DFG takes

place in successive stages. At each stage, a less complex model of the

DFG results. Each successive model must meet the data and control

constraint s of the original formal DFG while also more closely approach-
ing a final DFG model whose run time overhead is low enoug h to leave

sufficient resources for the mission tasks. The process of complexit y

reduction need not stop when this point is reached. Indeed , continuing

will further reduce the bulk of e r ror  prone translation required and -1150
reduce executive overhead to allow for fu tu re  expansion of mission re-
source requirements.

The simplifications achieved at each stage of DFG complexity
reduction may result from any of a number of DFG tuning methods
(desc ribed below). Specific examples of each tuning method as app lied

to the DAIS mission DFG are provided along with the method descr i ptions.
Details of the final tuned version of the DAIS DFG are  presented in Sec-

tion 1. 2. 3. The notation used in the final DFG is not strictly formal DFG
notation but is an adaptation biased toward the actual OSC executive n-model-

ing of DFG object s. A key to this notation is also presented in Section

1. 2. 3. Although onl y the final result of the DFG tuning process is diagram-
med in section 1. 2. 3, severa l intermediate  tuned vers ions  were sketched
(lur ing the tuning process . These i n t e rme d ia te  vers ions  a re  includ ed in

Appendix B.

The DEG comp lexity reduction process (i . e. , DFG tuning) is dis-
tinct from tuning of the executive programs and the i r  data structures.

()

• . _ - - -, _ - 
. ,c_

~~~~~~ 
-

_ - - --~~~~~~~~~~~~ --~~~~~~
‘± _ _ _ _ _ _ —~~~~~~ --~~~__• —-~~~~~~~~~ ---- •-

-_
14 - - ‘ .‘ - ~~~~~~~~~~~~~~ - — _ - •sa _._.~___..__ ._ s~~~~~~~~~~~~~~

”

I’

However , there is an Important interaction to consider . Tuning of the

DFG may result in a model which requires considerably less tha n the full

functionality provided by the baseline executive , in anticipation of thi s

situation the functional features of the OSC executive were designed and

implemented In a modular fashion to make their deletion a sImp le matter

of excluding certain procedures or data s t ructures f rom the executive
built . It is worth noting that tuning of the formal DA IS DFG resulted in

a significant reduction In the various executive functions required. In

fact , further tuning of the DFG was deliberately avoided In order to retain

examples of all important executive capabilities.

1. 2. 2. 1 Preemption Reduction

The executIon of two tasks , A and B, is said to be interleaved if

part or all of task A Is executed after task B beg ins execution but before

B complete. or vice versa . The execution of task. A and B Is further
said to be concurrent if at any time both A and B are in execution . Con-

cur ren t executIon c~ n occur only in configurat ion, containing n-more than

one processor. Example. are multiprocessor system. where memory
is shared , and federated processor systems where a data transport re-
source Is shared. In a uniprocessor system , only interleaved execution
of tasks is possible. In part icular , each processor in a federated con-
fi guration Is a uniproceasor in its own context. In a uni proceesor system ,

Interleaved execution occurs when one task preempts another , I. e. , when
the execution of one task Is temporarily suspended to allow execution of 1:

a more urgent task .

A formal DFG may impose many constraints on task preemption.

For example , In the DFG below , task B must complete execution before

task A can be executed.

7

— ~~~~~~~~~~~~~ ~-~~:

In the next DFG. execution of tasks A , B , and (‘ will be mutually exclusive.

For other tasks, the DFCZ may impose few constraints or none at

all . The purpose of the formal DFG is to specify exactly those data and

control constraints that are required for proper system operation and

¶ no more. Since all data and control relationships among the tasks are

specified on the formal DFG , any task execution policy satisf ying the

DFG constraints will per form correctly.

The executive builder ’s options in construction are proportional

to the level of detail on the formal DFG specification. The fur ther each

task Is broken down into smaller tasks , the easier it is to isolate the

sources of contention for resources.

The purpose of permitting preemption of one task by another

within a uniprocessor system is onl y to satisf y response requirements.

That is, a task with short response requirements may be required to run

at a time when another task is alread y running. The task alread y in

execution may take so long to complete that the other task’ s response

requirement cannot be met if the executing task is allowed to run to

completion.

The reduction or elimination of preemption requirements is the

single most effective n-method for reducing the complexity of the DFG

n-model. The reason for th i s is that tasks which cannot preempt one
another can access the same global data without a contention problem

(e . g. , one task reading the data while the other is writing it). If tasks

which must preempt one anothe r also contend for global data , then the

B

A -- — — — ‘-— -
_

- - - ~ - .~~ -- -
~

-— ---—-- . ‘-.
~‘- ~~~~~~~~~~~~~~~~~~~~~

-

L — - , ~— ~-
-

_______________________ —j-- -—— - - --—-~~~~ - .-- _ - ~~~~ _-~
•~.-t -_’ - _ — -—-- -——--— — -_ -

-

-

_ _ _ _ _ _ _ _

executive must coordinate access to that data. Consider the example

in Figure 1. Task A write s asynchronously into storage node B ,

task C synchronously updates B, and tasks D and E asynchronously read

B. Now suppose task A is allowed to preempt task C. A may then change

the contents of B while C is running. Hence C must be provided with a

separate copy of the data in B. In a similar way, if C can preempt D,
• then while D is running, C may write new data into B. Hence D must

be provided with a separate copy of B’ s data. H

9

~~~~~~~~~~~~~ 
- r  --

_ ___,1__~ 
— 

_— ~~—‘~~ --_ - ~~~~~~ ~~~~~



_ _
_ _ _

F’OI~ M A 1~ D1 ’ (~ R l• :1~ R ~ ‘~ l N t . \ I’lON

~1] 

H

(~~~1~ 1l~ l~ I~Y i:x E C U l’t\ E \Vll1 ’ N
________ 

l ’AS K t1~ I~~~1’1S

H

/Ill

(
~

) ‘~:;~ 
i l l

~~I’A TtC H LOC’R i•:x i t i r u p.’ I :  t N t l ~ I 1 ~ M F N T A ’r I O N
S1T 1 R T~~~(~ u N 1 rMrr 1~l) 1~~ l ’V M P T I O N

~~~ i’~
- r .-\~~~ VSS 1’Y V- \ ~~KS

)fl~ ~- •(-
•\& & ~~

Fi gure ~h. 1. FFF~(’ 1 O I~’ R F~F~N 1P’1 R~N ON P A T A :\~~(‘~~SS t 0 N i R O l

I (~

The OSC executive provides the facilities of the DAC (Data Access

Control) cluster to manage such situations. There are basicall y two ways

of handling these problems with DAC , one in which the data is staticall y

allocated (fixed locations for data buffers) and one in which the data space

is dynamically allocated (locations for data buffers are determined at run

time) . Which solution is better depends upon the length of the data and

the execution rates of the accessing tasks. In the static n-method the “current ”

data for B is always contained in a global statically allocated storage block

(SSB). Each tin-me a task which reads B is scheduled for execution , the

executive copies the data in B to a local SSB which the task accesses instead

of the global copy. Each task which writes into B writes instead into its

own local copy of B and the executive copies the data into the global SSB

when the task completes (see Figure 1). In the dynamic method, static

storage blocks (SSBs) are replaced by dynamic storage blocks (DSBs) and

only pointers to the DSB5 are copied by the executive.

Clearly, considerable executive overhead may be required to perform

such control of data access. On the other hand , if tasks A , C . D and F

in Figure 1 a~~e not allowed to preempt one another , then each task

will have exclusive access to B while it executes. In this case , no conten-

tion problem exists , and each task n-may directly re fe rence the single global

block B.

Anothe r problem associated with preemption is that of application

programs which are shared by two or more application tasks. If two tasks

which can preempt one another invoke the same subroutine , then that sub-

routine must be reentrant. Reentrantcy is usually obtained at some cost

in efficiency, and in the case of J731 an e r ror prone program controlled

stack management .

In summary , the key factors determining the need for preemptIon

are the response required for task execution and the n -max in -mtm -m indiv idual

task execution t imes. In general preemption can be avoided when the

maximum task execution time is sn-mall relative to most severe response

requirements. For this reason , it is important that the ,i ission planner

11

___________— — ~— ~•— ~ —-—---- -•--—- •— -
~~~~

--•- — —

specif y the system with the most detailed I)FG pra ct i ca l . In the DA IS

n-mission DFG , the maximum exemption time of a sing le tas k was

approximately 6 n-milliseconds while the tig ht est respon se requ i re ment

was approximately 30 milliseconds. Even under  maximum load condi-

tions , it was possible to meet the response requirement s without allow-

ing any preemption. However , in order to demonstrate the executive

handling of preemption , the longest task combination , A T Z O  on the

final DFG with execution time 8 milliseconds , was n-made preen -mptab le.

As a consequence , data selector .~l and the link data coming int o AT ZO

had to be put under executive management.

1. 2. 2. 2 Combining Tasks

Another important means of simplif ying the DFG is to combine

tasks  on the formal DFG into larger  tasks .  This is accomplished by

writing a skeletal master task which simply call s each task in the corn -

bination as a subroutine. Since subta sks  within such a task  combination
are executed sequentially, there is no mutual  preemption. There are

several benefit s to be gained by combining t asks :

• Executive scheduling overhead is reduced since one
scheduling of the combined task is equivalent to
scheduling all subtasks.

• Executive table space required fo r  the combined task
is the san-me as the space otherwise  required  for one
subtask.

• The source/sink requirement s of each subtask are
combined resultuig in fewer calls to DTF, a reduction
in the number of access controllers required and
batching of I/O operations.

• Control si gnals which individuall y activate each  sub-
task are combined into a single control signal.

The benefits of combining tasks must  be rea l ized  while adher ing
to the DFG specification. Tasks may be combined without deviating fro n-m
DTF requirements if they are executed under the same conditions , for
example, tasks which are controlled by the same clock or control link

(throug h an identity). In such task combinations , the skeletal n-master

task simply calls each subtask in any order. Tasks which are connected

to one another by simple data links n-may be combined. In these task corn-

1.!

_______________________



binations , the skeletal master task call s each subtask after all the sub-

tasks providing input l inks to that subtask hav e been executed . Cal ls to
subtask. in the master skeletal task are careful ly ordered to reflect link
imposed execution order . Finally, tasks interconnected by control selec-
tors may be combined. The control selector nodes which connect the tasks
are implemented in the skeletal master task as i f- then-e lse  statements
which call each subtask when the corresponding control selector predicate
indicates.

In n-many task combinations created for the DAIS DFG , subtasks

which are  conditionall y executed produce output to devices . A new soft-

ware signal capability (via procedure SIGAC) was added to allow the

skeletal master tasks to conditionally signal that one or more output

operations be performed when the task combination completes.

Large combinations of t asks can result in an increase in the
maximum task execution time to a point where some task combinations

must be made preemptable in order to meet response requirements.

Thi s can result in an increase in executive data access control overhead
greate r than the overhead saved b y combining the tasks . Hence , task

combinations which complicate meeting response r equ i remen t s  should

be avoided. In the DAIS mission DFG , suc h combinat ions  were avoided

except in the case  of AT2O . AT ZO is the longest  execut ing task combina-
tion (8 mil l iseconds)  and was  m a de  preemptab le  for  the purpose  of demon-

s t ra t ing the executive ’ s preemption capabi l i ty .

Some examples of task combination s in the tuned DAIS DFG are
ATO 1 which combines most of the tasks and control selectors involved in

handling asynchronous pilot input s , and AT 18 which combines several

tasks which must run at the 8/sec rate . Complete details of the tuned

DAIS DFG are presented in Section 1. 2 . 3. Details of the flow of control

within each task combination ’ s master  skeletal task ar e  specified in the

J73 1 program APPRC. J70 for processor 0 and In APPRC . 371 for proces-

son .

13

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~


— ~~~~ -~

I . ~. .‘. S e r ia l ir e r s

The ser i a [i 7e r nodes drawn on a l i~ may have quite comp lex

imp l ica t ions . In the w o r s t case , it imp l ies a n u m ber of input l i nks con-

ta in ing data wh ich must he queued by the executive as they beco me enabled

and then serial l y removed f rom the queue and cop ied to the output l ink .

i lowever , in actual prac t ice , thi s ful l func t iona l i ty of the ser ial i~’er ma y

not he requi red .

in the s imp lest ~~S t 5 O a se r i a l i . -e r ,uav imp l y e n a b l i n g a p a r t i c u l ar

l ink whenever any one of a n t , t n b e r of m u t u a l l y exc lus ive l i n k s is enabled .

In such cases no queueing is r e q u i r e d and e a ch input l ink to the s er i a l iz er

may be re placed by the sing le output link . Examp les of such ser i a l iz e r s

on the DAIS DFG abound , The s er i a l i :~e rs which control the i te ra t ive t asks

T53 and T55 on page 3B of the L)FG a r e good examp les as a re the se r i a li ?er s

on the san-me page which accept data f rom each loop output.

A slig htly more comp licated case is a cont ro l s e r ia l iz e r with inputs

which a re not mutua l ly exclusive. A g a i n execut ive queueing is easi ly

avoided by allowing the wait count for the t ask connected to the output

link to be decremented below zero. When the task comp letes it is resched-

uled if its recomputed wait count is still less than or equal to zero. On

the DAIS DFG examples of such t a sks a re I ’3t- and TZ2 (AT36 and ATZZ

on the tuned DFG) .

Finall y, t here is a more d i f f icu l t type of data s er i a l iz e r whe re again

ni t i tua l exclus ion is not obvious fr ox n the DF’~ . h e re it is pos sible to guar-

antee ser ial izat ion b y i n c l u d i n g the s e r i al i : e r s output t a sk in a separate
t a s k combination wit h each input task to the se r ia l i . or and disallowing mutua l

p reen’~pt ion of these t a sk c o m b i n a t i o n s, it is important to realL’ e that ti -m is
method neither implies that multip le cop ies of th e output t a s k a r e requi red

nor that the task mu st be reent rant . Examp les of t h is ty pe of ser ia li~~er

implementation in the tuned i~ F’~ ; are t a sk s A 10 1 , A i’0~~, and AT O~ which

all may call the same subtask (T0S~ and cannot preempt one another . In

some cases , the inclusion of a sub t ask in two or more task combinations

has forc ed dup lication of its output devices so that a d i f fe ren t data a rea —

can he used for each inst ance .

1 .4

-— — _ _ _ _ _ _ ___ — -— —

1T T T ~~~~~~~~~~~~~~~~~
_ _

1. 2. 2 . 4 Complex DFG Constructs

In some cases complex appearing DFG constructs yield to quite

simple executive implementation. That is, in some cases, the OSC

executive can model a complex combination of nodes without modeling
each individual node. Good examples of this type of simplification are

the eight clock controlled loops on page 3B of the formal DAIS DFG
specification. These ioops were reduced to simple combinations of
gates and tasks in the tuned DFG. The control selectors which monitor
each loop have been subsumed into each loop task and are manifested

a s software signals which enable and disable the appropriate gates.

The technique of combining control selectors into a combination
with the task which produces the controlling data and allowing the skeletal
master task for this combination to produce the appropriate software
si gnals was used throug hout the tuned DFG to eliminate the unnecessary
overhead of treating each control selector as a separate node .

P48 4/use)

T
C14- EQ

GT ’A T4 Ô

z.

(Do)

p4~
Cl 3 -

T4~ - —
A T 46 Cj S +(EQ)

4 A DZ7A
C15-

(EG) (Z f u e c)
4~

/
_

cI 4

FORMAL DFG TUNED DFG MODEL

15

-

~

j

Son~et I s i e’p re Sc ’ l%t ,%t Ion o I .i . out vol st m e t ti ~~ in Ic rn~ s of

sym bols is i a t h e r .m ~v t ~w , m r d , A c . t s r iii 1 oii~t I s t h e g r oup ol i m t ’t l r s

w h i ch t i l t i t n a t e l y c t t i i t t o l ~ t h e g at e tm c lock s i g i m , mI I ‘ I i n (lie lower hef t

~~~~~~~~~~~~~~~ of page  .‘ .\ of t h e  f o r m a l  h i I ~~~. W h a t  i s  spr i l t e d  i s  iw i t ’ hi  s i mp l er

tha i i  it a p pe ar s , i i . i i i t t ’ l y t ’ t~ i i t  r id ~ t ’l~~ t t i i t ’  ,~, 1 t i n 1  s ’ I t )  i l l  ~ o~~t rol t h e

g a t e . t h e ex e c u t ive  t m u p l e t i m e n t . m t i u n  r e d i i t ’ e r i  to  a s i m p le  c m i . m h l i i m g  t ’V  diii —

.m b l l i i g  of ~h me g at e  by s o t t w . i r i ’ si g i i : m h s  g e m i e i . i t c t l  in  t h e  s ke l e t a l  m a s t e r

t a sk s  for  the’ t a sk  c o mb in a t i on s  . \ ‘ l O l  an t i  • \ ‘ ( 0 ~~ c i i i  t h e ’  t t m i , ~~c i  l ) I ’

kft

I
“S

PP MIJI.0 3

— .7 
+

I I  N )~ l~ I ) l (  l\i ~l ~) ‘ i

!‘(.) R l ’v l A i ,  I ) l ’ (~

V r c ’q u o i i ( l v  , a u s e f u l  ~i i t i i j i l i  l . .m 1 lou I I r ep l.mc ’ r a I t  r ge  t u i m i t h e r  ~~t

~ol tw . i  me ’ s ig na l s  1’v a s i m i g l i ’  l i I t ’c e  i i i  d a t a  c t t u m t . t i l i u m g  i t h t ’ n t i t  i c ’ , t t  Ion nt t i m e

~t I g m m a l . Omit ’ x , i t i m p l i ’ 131 ’ t h I s  is  t l w  .‘ l * m ; ( , ’ i  i i c n , , l ( ’, l  I i  sks ( l ’0 1~ , ‘l’ ’) i . , e t c . )

on th e ’ l e f t  sid e ’  ol p a g e  1.\ i i i  ( t i e ’  h ’ r n m . m i  l i l t Th i t ’ t i s k  i i t ’ s t r t p t l o m i s  p r o~
.,s p m  mI  ut t h e  ~~ w c i t I * . m t i t c i m  m i ’ v t ’ a l  t h a t  t i m e  : o c t t ~v .i  r , ’ s i gn a l s  (Si ‘ , S In ,

et c . )  c ’ n t m t r t m h l l u m g  the ’ ,e e t . i s k s  ., i i ’ t i u i t , i . m h l v  t ’o h i u i i i v e . l (~~i . i i u i i i ’  ~‘t t h i s  i t  I s

pi i~i s u hi l . ’  ic i  r ep l . t i  , a l l  t h t t3 ’t e s igna l w i t h  .m ‘ l o g i c  ,~i g i m . m L  mo d  • m l i t . ,  ~t- 1ir d

wh ich ~it ’ t  (t ie ’s  vvhmlc - hm i , ~ i i . * I h a s  ,,c - c ’ t t r , i ~~l .

i i ’  

_ _ _ _ _ _ _ _ _ _  

1’
— 

•—
~r- 

—
-. — - -



I~~~~~
’—

~
--- ‘~~~~~~~~~~~~ ‘~~~~~ ~~~~~

- --—--— - ‘— ---— --—— -——--
~
—-. -- - —— — —- — ———-- ,—— - -‘— 

-~~~~ - -
~~~~~

--—
~~~~~ ~~~~~~~~~~~~~~~ 

ri

‘l’he associated tasks  c a n  be bound into a single task conib~natlon signaled

by the new signal . The skeletal task for the combination ca~-~ use the data

word as an index in a SWITCh statement to dispatch control to the ~ppro-

priate subtask .

—

,~~I ~~ t SZo~~ /~~\

~~~ 
U111t,~ ~~~~ b

TUNED DFG MODEL

F O R M A L l)FG

Another example of a simplif y ing signal/data trade involves the

tasks at the top of page 4B of the formal l)E”G. there , many signalled con-

trol links select mn output device for T&c . Instead , the control signals

can be combined Into a simple h it mask which Is updated by the control

tasks and read by T86 to select t he proper ou tpu t device.

)
/

1~

I ’ O R M A l~ l)FG TUNE !) DFG N I O~~ El .

18

_ _ _ _ _ _ _ _ _ _

-

~~~~~~~~~~~~
— -

~~~~~~

~~~~ r

1. 2. 2. ~ l’arttt ionln ~

Many factors  must be considered in part it ion ing the l)F ’G among

proces sors, The fact  that the formal DFG was designed t’or a four

processor system but had to be pa rtitioned tom’ a two processor system

made careful  consideration of these factors critical. These factors in-

elude memory usage balance (for both executive and applications),  func-

tional isolation to avoid tota l system failure ’ in the event of a single

processor fai lure , processor time requir ement s , t r ansfe r rates along

inter-processor links, distribution of source sink load, and allocation

of subaddresses . Generous detail in the formal  DFG is an important

aid to ef fec t ive  partitioning.

In parti t ioning the UA IS rwc; all these factors were considered .

The result consists of a well balanced two processor part i t ioning of an

app lication Intended for four processors.  Most of the inter-processor

communication is from processor 0 to processor  1. Data Is sent f ron t

processor 0 to processor 1 each t ime a data selector which is aeynchron’-

ously accessed (at a high rate) by processor 1 is updated by processor 0.

Processor 0 also requi res  asynchronous  access to sonic data selectors

in processor 1, namely 4 l~ 44 and ~2 . Th ese accesses occu r at a low

rate while updating in processor 1 occurs  at a hig h rate . 1 he nce , ra ther

than sending this  data via DTI” each  t ime it is up dated , p rocessor  () send s

a request for the data ( requir ing t ransmiss ion  of one data word)  when It

is needed. Processor  I then responds by sending bac k th e re quest ed da t a .

1. 2. 2 . t3 Other Posaible Sin~plifications

Because of the desire to demonstrate v ar i o u s  executive fea tures ,

not all possible sinip lifications were  app lied to the  fo rmal  PA lS ~~~~~ In

• particular , n-more tasks could h ave  been combined into l a r ge r  tasks .  h.’or

example, tasks running at one rate could be combined wit h t a sk s  running

at a slightly hi gher rate. Althoug h such t asks  would he ex ecuted at a

hig her ra te  than required , thu s  consuming  more processor  time , gains

in reduced executive overhead  obtained t h r o u g h  e l iminat ion  of t a sks  and

clocks might more than  compensate for th i s  apparent  ine f f i c iency .

1 ()

~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _

P—-- -~~~-— -•, -

Tasks T89, T90, and T9 1 present an ins tance where a s igna l /da ta
t rade coul d have been made eliminating two task nodes , two clock pins ,
three signals and three gates. In this simplification the gating signals

p ro(lUced by i’87 would he replaced by a data word w lii cli selects t i me

appropriate subtaF ’~ in a combination t a sk inc luding T89 , ‘l’90 . and T~ 1.

1. 2 .3 Fina l DFG Model

The following subsections (1. 2. ~. I - 1. 2 . 3 . 4) p resent the resul ts

of the DFG comp lex ity r eduction process as applied to the DAIS mission

DFG. The notat ion used is not the f o r m a l i)FG notat ion but an adap ta t ion

of this notation which corresponds more closel y to the OSC executive

constructs which model a DFG. The meaning of each symbol used is

specified in the subsection which follow s .

Appendix B Includes working DFG ’s which were drawn at various

stages in the tuning process. The final tuned version which follows is

the result of repeated application of all the tuning t echni qu es described in

the preceding sections. The constructs which are included in the final

tuned version are onl y t hose which requ i r e ’ ac t ive management by the OSC

exec utive for correct DFG operation. Constructs not requiring executive

management were omitted to simplif y th e d i a g r a m .

Althoug h all of the tuning methods descr ibed were applie d , two of

them account for most of the simpli f icat ion achieved. One is the conibina-

tion of tasks which are act ivated under iden t i ca l condit ions into la rger t a sks .

This tuning method is described in Section 1. 2. 2. 2. The resulting task

combinat ions created for the Dais miss ion DEC a re l i s t e d in Section 1. 2. ~. 4.

The other f requent l y used tuning techni que is l imi t ing of i n ter t a s k p reempt ion .

This technique is described in Section 1. 2.2. 1. Althoug h the miss ion re-

sponse requirements do not ma ndate any in te r t ask preemption , preemption

of the longest executing tasks was p ermi t t ed in o rde r to demons t ra te the

execut ive ’s (ti ll c a p a b i l i t i e s . The p r e e m p t ion s t r t m c t u r e for t h e p r o ce s s o r

O DFG iam

2))

—-- -
-
-

- - - -

- A

r~
-r - -•--- -— - ----

~~~~~~~~ 
..--. —--—--- -

~~- — 
- .

~ — .—— .-—-- ——.‘———.

all othe r
processor 0

tasks

preempt

ATZ I

preempt s

A T I OZ
ATZZ
AT55

Tasks which cannot preempt one another can share access to data selector
storage nodee without executive intervention. It is for thi s reason that

only a few of these nodes appear in the final tuned DFG. The storage nodes

which do appear are exactly those whose access must be managed by the
executive to avoid contention among tasks which can preempt one another.
It is also the reason that several tasks appear to have no data inputs and/or
outputs (in particular task combinations AT~ 5, AT68 , AT 81, and ATS6).

Some of the task nodes in the final DFG do not appear in the ori ginal
formal DFG. These nodes are special purpose nodes which aid the executive
in initialization and failure detection. They are described in detail below.

Special Processor 0 Nodes

1) RFIN - this sink node when activated si gnals completion
of initialization of both processors and causes the
processor 0 executive to start  its periodic clocks
running.

2) RCLI< - Th is sink node is activated periodically by a
clock signal. It causes a special message , which
Is used to synchronize the real times clocks in
both processors, to be sent to processor 1.

3) ATRPA - This task node is activated periodicall y by a
dock signal. Each tin-ic it is activated , it checks
a flag which  is set if a message has been received
from the ’ other processor.  If no message  has been

21

~~~ 

: _ - I

rec eived , the othe r processor is assuined to
have ’ fa i l ed and Its fa i lure l ink (RPFAIL) is
enabled. Otherwise the f lag is simply reset .

Special Processor 1 N odes

11 R E I N — I b i s s ink node is .m , - t i v a t v d wi me ’ii t ime ’ p r o cess or
I ex e cu t i v e comple tes i n i t i a l iz at i o n . I t s ends a
me s s age to processor I) w h ich causes l ink RPFIN
(r e m ote processor f in i sh l i n k l to be , ‘n .mb le d in
proce ~ sor 0.

2) ATR PA — This t a s k node has t h e ’ s ame fun et i on as the
node wi th t h e same name in p rocessor 0.

The numbers which appea r on the data l inks which a re input t o

nodes DII and 1)12 in the processor (1 DFG also have- a special mean ing .

They indicate’ the nuinber of t i m e s each link n iust be’ enabled before the

ter minating node is activated. in e f fec t these l inks func t ion as speed

cha nges (d iscarders) . This imp lementa t i on of speed changers is more

efficient for discarder ratios which are integral than the discarder node

itself.

1. 2. 3. 1 Key to DFG Models

Application Task ATx*X ATxxx is index of corres-
ponding node .

Data Link —.------- —— -~~ Nxx or A xx is the index of
the PTF notification or

Control Link D A - access controller
Asynchronous Access Link - ~ ~~~~~~ associated with the link

(if any l .

Data and Control
link to and from ________,- ,. iii
remote processor

Software signaled links
(link signaled by a t a sk ‘a’

~
via executive interface
procedures: SIGNLFVENT,
ENI3 LGATE , DSIILCATE ,
or SIC.AC). v v

i t

— - -- __ -- - -

-
• —

~
— -~~:

- —.
~~~~~ ‘

— —---- -‘- .—~ ——..— — — ~— —‘~~~ --—-—— ~~~~ —--‘~ —~~~~~~ ,——.— —— — -~ — —



-~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~~~~!L- .— _
- — —~~~~~ .. ___ —- -~~~~~~~ --- ~~~

Pin (hold. event time for name Is index of pin
the most i-ecent enabling).

• Clock Pin (frequency is ~~~~~~~~~~~~ Pxxx is index of pin
given in parenthesis). Li

GTK,Ix
Gate GT”ocx I. Index of gate

Task with serialized control b C

(I . e., task runs once for
each enabling of a , b , and
c even if they occur simul-
taneously).

: ~~ sk

Simple Identity (control ) Sbc is Index of node
SI*

Data Identity Dlx Is index of node

Inverter (changes enable IVx is index of node
to disable).

Data Selector Storage Node SSCxxx Is index of corres-
(static allocation) ponding static storage

controller.

Data Selector Storage Node DSCxxx is index of corree-
(dynamic allocation) DSC,C** ponding dynamic storage

controller.

23

~ 

T~~~~~~~~~~~~~~~ _ _ _ _ _ _  ---



r’~~
- - -— ‘ 

Source (for ta sk s l .  Data is Ds~ ADxx is the access-controller
read from the source when NDSSX~ 

on the task node ’s beg in access
th~ task is read y to be list which causes the source to
scheduled. When notifica- be read. Dxx is the name(s)  of
tion is received that the mask the device(s)  read , N Dxx is the
data has arr ived , the task notification code provided by DTF
is scheduled, when the data has been read.

Source ( stand alone). Data Icontroup R Dxx is the index of the source
is read from the device when ~~ n~ l e (RL node), Dxx is the
the control link becomes c~ij~~’. name(s)  of the device(s)  read ,
enabled , notification is pro- ‘

~
‘

Dxx 
N Dxx is the notification code

vided when the transfer is provided by DTF when the data
complete. has been read.

Si nk (fo r tasks) .  Data is Pe Dxx is the index of the access
written to the sink when the tas k controller on the task node ’s
task completes. If a notifi - end access list which causes
cation link is shown , then the data to be written , Dxx is
the task may not be scheduled the device name(s) ,  NThcx
for execution again until out - (optional) is the notification
put is complete. code provided by DTF when -

•

the data has been written.

Sink (stand alone). Dat a tcontr ~~ j tdat a) R D”cx is the index of the sink
(accessed via the asyn - node (RL node) , Dxx is the
chronous link) is written device na me(s) , N l~ cx is the
to the device(s)  when the notif icat ion code provided by
control link becomes en- I)TF when the transfer is
abled , notification is provided comolete.
when the t r ans fer  is complete.

a b c
Node which becomes active
whenever a , b , or c is
enabled , a , b , and c never
occur simultaneously.

24



_  • ~~~~~~~~~~~~~~~~~~~~-~~~~~~~~~~~~ -- - - - -~~ - - - - 

Link which enables a gate.

Link which disables a gate. ~DG)

Link which can enable or (EG/OGI
disable a gate.

Link to remote processor xx is name(s)  of data selector
which carries data selector task node(s)  whose data is sent to
da ta, the remote processor . A DSSxx

is the access controller In the
NOSS~X ta8k’s end access list which

causes the transfe r, and N DSSxx
is the notification code (if any)

“ AOSS~ x .provtded by DTF when the trans-
fer is complete.

Asynchronous access link ADSSxx is the index of the
to data áelector node in a ~ ADSSx~ access controller in the task
remote processor. When NOSSXX node ’s begin access list which
t ask node becomes active , causes a message to be sent
a message requesting the to the remote processor request-
data is sent to the remote ing the data in the data selector(s)
processor. When data is task xx. When the data is received
received from the remote DTF notifies the task node via
processor , the task is the notification code NDSSxx.
scheduled for execution .

Link which carr ies  data NDSSX~ NDSSxx is the  notif ication code
from a remote data selec- ~ pr ovided by DTF whenever
tor storage node asynchro- data for the data selector(s)  xx
nously for asynchronous OSCXX is received. DSCx.x is the index
access, of the dynamic storage controller

\ADSSXK for the data selector(st. A DSSXX
is the access controller used by the
task node to gain access to the
latest dynamic copy ot th~’ data.

Data selector data sent in ~ ‘h en data request is received ,
response to asynchronous task DTF provides the notification
request from a remote code N DSSxx which causes the
processor, sink node Rz7 to become activ e.

The requested data is copied
from the data selector storage
node xx via the access controller
with index AXXR ?Z and sent to
the remote processor which

A*x RZZ requested it.

— 2S



~~~~~~~~~

- -
~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. 2, 3 . 2 I’rocessor 0 1)F’G Model
PROCFSSOR 0 - page 1 of 3

~ ~
) I.-•s,l

PgLX1)~ ~ , ~‘ ‘ ,~, CI XI

~~~i r ’ 
~~~~~ 

LI LI

• •) I ‘~ ‘I ~~~~
~~~~~~~~~~~~~~~~ / I) I I l L  4 I 

‘A 
• ~~~

II ( JI’~ A l l),’

- 

~~ ‘~~~~~~~~~~~~ Cti)’ 

~~
) 

~~LI

[

~~~~~~4~~~~~~~~~~ t~~ 
~~~~~~~~~~~~~~~~

Al ’  I Al  I , ’ ’ . ~ - - — -  - 
•I \ UAL . \ h 1 4 )  

SItA 
l)~~)

AbPt l m 4 AL~II 1.11
\.~~ ./ ‘

..~~~~~,

[1 t ‘ 1 1 1 SteD )‘I~ ~-‘I I)Ot ACP~

LI Li Li [1
~~~~~~ 

‘— -: / ,‘

Nfl~~~ t k~~1 -

•

}3 ~ 1/ \
I - ’ I

- I
I~ I ,‘k~j

\ -“
f l ~~~~

‘(r I ~ I’~

~~~ I~~~~~, 
H ~1 ‘i,~l

v \ ‘  
I ~~~~~~~~~~~~~~ 

A A ) l 
)

~ • ‘ - ‘- 

-
‘ 

I ~;;

t 
‘
~~

‘

~ 
‘ ‘ \ I’O’  Al l%t ,l

- I t i  / 
_
\_

~ 
~~- ‘ ‘ ,

1’ ) -

AI ’ .’ •~~~
‘
~~~~~~

‘‘
~~~~ 

\ \

r “ ‘

~1 ~:“ 
-
~

2

- ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -~~~~ 
I 

~~



~~~

--

~~

— ‘---x - ,- --
~~~~~~~~~

--- -
~
--- -- —

~~~
--, -- -

~~~~
.
-

-- - -

_ _ _  -

PROCESSOR 0 - page 2 of 3

I__  ‘~~1 • ‘  

—

“ i’’ -
• 

~
. I I I A(1It’ )8 I ’ O  I I 4(54 ~‘I (J

~ -J ,/ 
I -J 

- 
L~~J \2’- t4) -

/
/

~ I5• , 

-

C 

~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~

~~C” ~ ~~~~~~~~~~~~ 

~~~~~

-

SSCI~~~~~~
[

~~

J

L~j1
A1JC)I~~ f

I
,

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

\ C

~~~~
‘

-
~~~~~

_
LY~ls 

,

~~~

- - - -

~~~~~~~~

I~~ I
0C4 I-—I -

3)
S ’LilI”

s ’ ~
-
~ :~

[ i P) 3 I ~( I I 1  ~~~ ) ) ) I L III • ,~ - I  ) ‘ ))I ’ I)1~ .• -~

~~~~~~~~~~ 
“s

. T ~ LI LI LI
NL~ ’4

N I ’ ’ ’

L;) A) s) f ~ .~ 135 A l ’ ~)t5 ~~

,‘4 4 •n ’ P)
~

) , t C ~ ,‘l

1 1 I~’] 1•~
]

~~~~~ 
(~~~i”~ 

(.:~) (
‘
455 )

AI~.I4 4? ( )

~~~~~~

5’

~~~ 
(; ( 

II

~~ ) 

I ‘ 

~~~~ 
• ‘

A~ “-~~ ‘ ‘~~s I ’ A A t I~~s~~~ is ii)ll A L’~L~~~
- •~

_ _ _ _ _

- ~~~~._ - : - . -
_ _ _ _ _ _

-

~~~~~— --~~~~~~ _ _ _



— —_~‘•-- -,‘--I..—-_’,_.-v-- —-,---__ - - •_ ••
__

~___~•_•~•• —-

~~~

TT
~~~~~~~

- 
~~~~~~~~~~~~~~~~~~~~~

i 5 rocessor 0 - page 3 of 3

I~~~H 4/.~~-I
)~~~

‘ I

I i ci
V

-
- 4 . t I .)

- ‘ .5) 4(1 ~~I ‘ - -

- — ~~~~ ~~)4I)) II” ’) 1A3 1

I~~~ II ~~~~~~ :!l

— -
~~~~~~~~~~~~ A l  ‘~

1 1

~~~~ i m e ~I ~~ \ I )  ~~~ 

,) s ~~~~ 4) ~~~.S

/

I I•l. (

L~5’ A T 4 ~
- —

/~~~l - A1~~

I1~~~ I

/ ‘ 4)))/.,./)

19’ -

(~ 13) (1131

/

_
~~~~~~~~~~~~~~~~~11

_

i 
_ _



- - . - 
•
~ 

- .

1. 2. 3. 3 Processor 1 OFG Model

PROCESSOR 1 - page 1 of 1

N05535 Nfl553’ NCCSS3? ~4CI%SI9 51’ Nt’S~~t”~ ~~( i . ” . -

,L.~
SC3t(.bI 1e.t21 

1
’
~~Ij( sJz iL~sci.s .15 III j I111~t .~) m % ~~~~

,~~ 
‘
~~ • ~~“A Si l l 154 

II’.( .5.A •

A36 ).4 ‘ ;. ‘ \ •.A 3 f l . ’)  S A:C. ) I I I  ~~ ~~~~ 1. 1 I

/ 
\ / 

- 
Alt) ~~~S I. ’ ’ 

~ • . 
~~~~

I’ I
~
,
/ ~~~~~ ‘ “ ~~~~ A)) I~ I~~\._... A5 A~~ ;) l) , ,) /

/ I / ,‘ ‘
~

‘.5
\ C) (

• •• I “. \ “ ‘Jr “I /

A21T7 1
/ ~

-
~~

‘ P~ l l65’ .I r~’i
,

I
~

- -
~ .5 \ \ I ~

/ — m Li A~~ .51 .~) - — ~‘~~~‘
-
I

~ ~~~~~~~~

-

/ ‘ - . - — -- .5 .5 “ I’’~ I’ .’ A I l~’ ’,p.) III AI .~ - ‘ I~’IN

;AI9381 ? ’
A.’i,fl h’ ,A

~~~~~~~~~~~~~~~~~ 

Y

/ ~~~~~~~

l(C’/I~t ’ I ~~M)

( 
[

J ) ,4 i 1 i # 5 c )

‘ I ~~[\1 — -L \“p ~ ~~A l .  I ,,i r i-, .

I I’28t3~~~i i !  ~~ ‘ ~~~~~~ .- 
I ‘) L r

- S34 - “. ‘- - 

~~
- - -- - -

~

-

I I &j  ‘.-.~ Pt  I A C ~ O •. ~~~~~~~~~ ~ _~~“ ‘~ - -

p I / ~~~\ ‘N ,? .~~ 
C” )

~ : (~
T
~

1

A) 

‘

:‘
•‘•-

~

-‘.
~
-.... 

,.
,i

I 
~~~~ ~ ~~~~~ - N ~~~~

~ ~~~~
J”

~:~~

’

~~~~ 

- “
N~~~ 

~~~ 
‘\~~~~~ :~ -‘

(:.~
~ p)flII I~~’.~~~

‘

~~~~~ 

1~~~~ J 
~~~ 

U
- -

•~ ..4.~~N1GSt’)l I)

/ ~~~~~~~~
44~~~•

- -
~~~~~~~~~~~~~~~~ I • 

-

I A l  • •  - 
c~im ’~- I 

•
~~~ 1 ~~~ ‘ -

- ~~) -
- C’i,,

I ‘

~ 1

A irt)

- 4: -: ,,?

- - s (ASK,~~

~~~~~ ~~.L’ i’ •‘II ’~J ‘- . 1 / . -

20
I-

I 
____ - 

_____________________________________________~~~~~~~~~~~~~~~~~~~~~~~~~~~ L~~~~~~~ —~~- -~~~~~~~~



I . 2 , ~. 4 (‘or r i - sp s m u l e i u -  r )L - ’( Mu k-l t o V or m n a t I ) t ” G 
-

I)E(’, Model  V or n T h l  fl1- ’G Task  an d Co n t r o L  Selector
‘I’.ssk Node I roc i’s sor Nodes  Included

ATO1 0 TOl , T02 , TO ~~, T04, I ’O~~, T06 , T07 . T.~7 ,
‘I’87. ‘j ’ ’)’) • TI 00. (‘1 ( 7  C , C4 (‘‘i ,

c7 , (14, (‘i O

ATO ’~ I) m c , ‘F OI s . l’07

ATO8 0 T08 , Cs

ITO’) () ‘l’04 . TO? , T08 . TOO Cl 0

A’rl 2 0 TI 2 , ‘I’~’2 , T88

A’l’l 8 0 TI 0, ‘I’I7 , TI 8, Ti 0 . ‘1’ 14 , ‘I’ %~~ , T ~7 , T ~o ,
‘I’44, ‘l’46 , T ’0 , I’h-I Tl 0 1 , CI 2

AT2O () TI I , ri ~. TI 4 , T I c . TI ~~~, T2()

AT 2 I I) T21 , T2 ~ , T24 , T2~~, i’2~~, 1’28

AT22 0 ‘l’22 C i i  H
AT~ 2 0 T~~2 , ‘1’~~

AT %t ~ 0 i’2 ’) - ‘1’ 10 , 1’ ii  . ‘1’ 1 ’ , T40 , ‘l’41 • ‘V42 , F-I 1 ,

C 27

AT ~8 0 ‘1’ 48 , ‘I” 7

Al’4( 1 () i’ . ’. ( , ‘l’ -11 , (1 ~ (‘I ‘-,

A’r47 0 ‘r.’.i’ . 147 . C II’ , (17

A T 4 H  (1  ‘1’2i’ . T48 . C I 8

0 ‘F2 ’ , ‘F- tO , (1II

AT5O 0 Tco -rc i ( ‘20 ( 2 1  C’ .~~

0 I’2.(I , 1’1~.)., ( 2 ~

ATc 0 ‘F.~~’ , 1’ ’ ~ , ( 2•I

(1 ‘F2 ’ , ‘l”~4 ,

1) Tc ’

~~~~~~~~~~~~~~ _ _


—--- -
— -- --

-
— - _ _ _ _ _ _ _ _

DFG Model Formal DFG Task and Control Selector
Task Node Processor Nodes Included

AT59 I T59

AT6I 0 T61

AT6 I 1

AT65 1 T(~~, T 6

AT67 I T67

AT68 1 T68

AT7 1 I T70, T71 , T73

AT7 Z I T69 , T7Z , T93, T94 , T95 . T96 , T97 , T98

AT79 I T74 , T75 , T76 , T77 , T78 . T79

AT8O 1 TAO

AT8I I T81 . TAZ , T83, T84

AT85 I T85

AT86 I T86

AT89 0 T89

AT9 O 0 T90

AT9I 0 T91

AT9Z 0 T92

AT 1OI 0 T08 , T 10i

AT I OZ 0 T08 , T102

AT 1O4 I T58 , T 104

41

- --
~~~~r--

-----—
~

- - - - -  -
~~~~~~~ “- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -i-— --~~~~~~~- - _ _ _ _ _



— —~~~~~-,‘-- 

Section II

SYSTEM PARAMETERS

The system parameters are those’ mission paz-am~ t - r s  which

are- pe rtin ent to e~~e - c ut i v e  pe- rtormanc e’ . The- value ’ s of t h e s e  pa ramett r s

.t re cli ’ rive’d by exanilna lion of the cons  t r isc t ed DFG model (d i s cuss  e d  in

Section 1 . 2) t o get her  with the’ s upplt.me-nta r y i nfor imi  t ion  prov  idt~d w i t h

the formal mission DFG.

Some data provided with the formal i)}-’CL though necessary in

the proce.ss of construction of the DFG model Is not d i rec t ly  p e r t i n en t
to executive performance: for example , the main memory space’ required

by each task. The information which is per t inen t  a r e  the rates at which

clock firings and the asynchronous events which dr i v e  the DFG occur ,

fly following the flow of control from clock and external pins o n - t h e  1)FG

model the rate’ at which each node— is activated can be estima t~’d . In sonic

cases as sump t i on s  about the probable  ac t i on  of co t i t  rol s eh~c to rs , gates

and tasks which can s igna l  m u s t  be made , In i~eneral , the worst ease

conditions (i. e, - those which maximize a c t i v i t y )  a r e  a s s u m e d . In par-
ticula r , all gates a r e  a s s u m e d  open unless  some nmtuaUy  exclusiv e- re’ -

lationship is s pec i fie d  in which cast ’ the most severe  of the mutuall y e~-

clusive gating conditions is a s s u m e d .

Once’ this de ta i l ed  I n f o r m a t i o n  about  node’ a c t i v i ty  has  be- c-n produced .

the rate of each executive’ activity can be computed. Each executive activity

can be timed by straig htforward examination of th e-  machine instructions

executed , fly combin ing  t h e s e - pa ranieters - the tota l w o r s t  c a s e  ex t - c  ut ive

execution time’ we ’ rhe—ad m a y  he - c omp u t e d . In a dd i  l ion  - bus load ing  can

be compu t e—cl  based on the ’ activity of node ’s wh ich  a re -  at t a c h e d  to t/O

devices  (and r e tnote  l i nks )  t o g e t h e r  wi th  the s upp iemen Ia r y i n for m a t i o n

to the’ formal l)FG which  p rov ides  the  n u m b e r  of w o r d s  t r a n s f e r r e d  t o  or

from each device’.

Computation ot e-x t - c u t i v e -  space ove-rhead is more’ e a s i ly  perform ed.

)‘rog ra en space- ov ~- rhe ’ael  is simp ly the to t  t i  ~~~f the  space  r e q u i r e d  liv each

- 
- 

executive procedure’. Data space is the total of each data structure size

( e _ g. - table ’ e n t r y  si . ’e) t i m e ’s  the number t s t  i n s t 1 t t s t ’es ~ t t h a t  d a I s  s t r u c t u r e

required t C) imp le’ en e’ n t the  ttine’(I I) I”G model .

32

— -

~~~

~~~~~~

- 

_ _  
_ _ _ _ _a~a~~~— — - -~~~~~~~~~~~~ - - V —  _

~~~~


2 . 1 ProcessOr 0 System Parameters

C LOCKS:
Rate # Pins

Name (firings/second] attached

P2 32 2

RPA 20 1

P19 19 1

P3 16 2

P12 ia 1

P13 10 4

P1 8 2

P4 4 3

P6 2 1

P7 1. 25 1

P9 1.11 1

P8 1. 00 2

P10 0.476 2

CLK 0.150 1

P15 0. 016 1

Totals 15 clocks 127 f i r ings / sec 25 clock pins

223 pins/sec

37 sirnultaneous firings/sec

90 clock interrupts/sec

33

- ~~ ~~~~~~~

—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ E~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-‘

-- .-- . - — - -
i~

—
~

-

- -——-
~~~~~~

—--—--- - -—

~~~~ 

-

NODES:

— -

~~~~~~ 

-

~~
Activat ions

Type Quant~~y (per second)

Tasks
Periodic 9
Conditionall y 14
periodic
Aperiodic 6

29 157

Control selector 1 8

Discarder
32/ 5 2 64

32/10 1 16

5/4 1 5

Data identity 5 29

Remote link 7 60

Gate 1 0

Simple identity 1 8

Inverter 2 0

Totals 50 nodes 347
ac t i v a t i o n s / S e c

LINKS:
Number  R a t e

type Posted

Output  l inks
0 256

1 59
-4 32

~47

Consum e links
0

Total 427 pos t s / s e c

_4 4

-~~~-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



p 
— 

- - - - - - --. — —,---. ‘
--- 4_-~- 

— — —

-- —----- ~~~~~~~~~~~~ - —- a— - — - _ _ _ _ _ _ _ _ _ _ _ _ _-

DATA ACCESS CONTROL:
Rate

Activity (per second)

Pr ocess begin access list 246

Process end access list 246

Process access controller

I/o r equest  226

Static copy 44

Dynamic block allocation 32
302

Word copied by MOV 461

I/ O:
Rate

Activity (per second)

Master to remote switch 100

Remote to master switch 100

Master I/O complete notification(s) queued 90

Remote I/O complete notification(s) queued 5

I/O complete notification 2 16

Data transmitted (command word) 507

Data word transmitted 3000

I/O request
Static data 195

Dynamic data 32
227

35

-- iTI
~~~~~~~~~~

-- i
~~~~~_ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



- _ _ _ _

_ _ _ _  — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

2. 2 Processor 1 System Parameters

CLOCKS:
Rate # pj~~

Name (f ir ings/second) attached

P2 32 2

RPA 20 1

P11 20 2

P3 16 1

P14 15 1

5 clocks 103 f i rIngs /sec  7 clock pins ‘

155 pins/sec

36 simultaneous firings/sec
- 

- 67 clock in te r rup t s / sec

NODES:
Activations

Typ~ Quantity (per second)

Tasks
Periodic 3
Conditionally 6
periodic

Aperiodic 5

14 224

Data IdentIty 1 1

Remote link 3 2

Totals 18 nodes 227
activations/sec

~ 

~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — _ _ ___ _—__*_____ __a_

F-.- - -
~~~~~~ 

— -

~~~~ 
-

~~~ 
—

-T - 
-‘---- -- - - — - - -- -‘-

~ 

-- --- —

——

I .INKS:
Number Rate

Type posted (per second)

Output links 0 163

1 64
- 227

Consume links 0 227

Total 454

DA TA ACCESS CONTROL:
* 

Rate

• Activity (per second)

Process begin access list 227

Process end access list 227

Process access controller

I/O request 108

Static copy 40

Begin read dynamic 352

End read d ynamic 352
852

Word copied b y MOV 560

47

I 
j  

___________ 
_____ ________ 

_____

- — -
~~~~~~~~

-
--— ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~ - - .~~~~~~~ -

~~L —
— .- * --~~~~~~~~

~~~~~~~~~~~~~~~ ~~~~~ ~_-~
-—- ~Lz

1
I/O :

Ra te
Act ivitjr (per second)

Mas te r  to remote- switch 100

Re mote- to mast  -r switch 100

Master  I/O complete not i f ica t Ion(s)  queued n O

Remote I/O c omplete not i f ica t ion(s)  queued 50

I/O complete notification l t b

Data transmitted (command word) 60

Data word transmitted 561

I/O request  (s ta t ic  data ) 110

38



_ _  _____________

Section III

TUNIN G THE EX ECUTIV E

The OSC executive which results  from the’ const ru ction process

descr ibed in Se’c t iesn I is cal led the baseline’ executive for  the  mission.

It Is possible tha t this baseline’ executive uses so mu ch processor time

and space tha t the mission ’s resource requirements cannot be met,

Henc e , It Is important tha t the performanc e of the baseline executive

be calcula ted and that the executive be tuned If the per formanc e Is In-

adequate .

This section descrIbes In detail the calculation of baseline ex-

ecutiv e performance’ for the DAIS mission , the process of tuning the

executIve , and the performance of the tuned executive .

II

4! )

- - -~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~~~~~~~~~~~~ -~~~~ ~~~~~~~~~---~~~~~~~~~~~~~~ -- -~~~~~ -
— —~~~~~~~~~~~- - ~~~~~~~ - - 

_ _  ~~~~~ - -
~~~~~~


- - -

~

~
- _ _ _ _ _ _ _ _ _ _ _ _ _ _

3. 1 Baseline Executive Sta t i s t ics

Time/Second Space
Processor (ni L l l i8econds) (words)

Proce sso r 0

J73 1 Programs 296. 096 7017

Assembl y Language
Programs 74. 489 1301

Tables 3635

Total 370 . 585 12045

Cverhead 37. 1°_ o 36 , 8%

Processor 1
J731 Programs 332. 476 7017

Assembl y Language
Programs 77. 882 1301

Tables 2720

Total 4 10. 35S 11130

Cverhead 4 1.O~~ 34O0~

This section present s the time and space statist ics for the baseline

executives. Summar ies a re presented in F igures 2 and 3. It should be

noted that the baseline executive is generali ied ; that is , it is not d ependent

on or tailored to the app lication DFG. The space statist ics presented for

each c l ust e r c o n s i d e r a l l p r o g r a m s . Separa te f i g u r e s a r e p resen ted for

t he execut ives cont ~e i n i n g e ’isl y the necessa s-y p r o g r a m s .

T h e ’ ex e c u t i v e ’s ha v e - not been s t r u c t u r e d to n un i m i ~
- e’ ov e r h e a d

related to compi le r def ic ie’ncies si nce th is wil l be ha ndled in the t u n i n g

process . The i n a b i l i t y to enable and disable the p rocess ing of i n t e r r u p t s

as inline funct ions and the lac- k of double precis ion fixed point i tems requ i r -

ing assembler procedures for subtracting , adding and comparing these

values contributed over 3. ~~~~~~ t ime overhead to each processor .

40

~:ii -

~~~~~~~~~~~~~~~~~~~~-- —k- ~~~~~~~~~~~~~~~



Cluster Processor 0 Processor 1

ITC 91. 436 85. 591

TIM 83. 011 63. 532

DAC 30. 123 58. 165
SCH 34. 635 49. 415
DTF 85. 775 88. 803
MSM 6. 829 18. 983
DSP 38. 776 45 . 869

• Total 370. 585 410. 358

Overhead 37. 1% 41. 0%

Fig. 2 Baseline Executive Timing Statistics

ExecutiveTotal Executtve -
______________ ______________ 

w:th programs used by DFGus er Processor 0 Processor 1 Processor 0 Processor 1

ITC 5093 4151 4411 3129
TIM 888 808 810 730
DAC 1387 1312 1099 958
SCH 332 332 332 332
E~TF 3484 3020 3484 3020
MSM 426 1072 426 1072
DSP 435 435 435 435

Total 12045 11130 
— 

10997 9676

Overhead 36 . 8~ , 34.0% 33.6% 29. 5%

Fig. 3 Baseline Executive Space Statistics

41

-

~

-
---

-- T J ~~~~~ ~~~~

-

~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

--~~~~~~-~~~~~~~~~~~~~

4 . 1. 1 ITC l~a se l i ne S ta t i s t i c s

Time/Second SpaceProcessor -(mtl l~seconds) (words)

Processor 0

.1731 P r o g r a m s 55. 738 33~~2

:\ssembt y Language
Progra ms 2. -~~S 16

Tables 1685

Total 9 1. 436 5093

Cverhead ~ 15 . 5°~

Pr ocessor 1

J731 Programs S3. Son 33~ 2

:\sse nsb l y Langua g e
Programs 1. 72 5 in
Tables 743

Total S. ,. 5~~1 4151

Over head S. b~ . 12 . 7”

3. 1. 1. 1 Approach

The Inter task Communica t ion cluster is r e spons ib l e for over a l l

control of DFG interpretation. The p r i ma r y data s t r u c t u r es which con t ro l

the interpretation are the node table (NDTI3L(, the pin table (PINTBLI ,

and the link tabl e (LNK TBL) . The tasks pe r fo rmed by I TC inc lude :

• Processing of t’vcn ts signaled through pins .

• Posting of enabled and disabled l inks.

• Processing of active nodes.

• Ini t ia t ion of 10 ac t iv i t i e s (v i a P.-\ C I .

• P r o c e s s i n g of 1 0 complete n o t i f i c a t ion s .

3. 1. 1. 2 L~ef in i t iou of I F (’ : \c t ivit ies

Timing stat is t ics for IT w e r e derived f rom the t ime required to
p e r f o r m each ETC ac t iv i ty toge ther with the rate at which each act iv i ty

42

-

_ - -~~~~~_ -—-~~~~~ -- — --~~~~~~ -~~~~~~ -- ------ - - -~~~~~~~~~~~~~~~~ — -- _

~~-~~
--

~~~~
_-

~~~~-w ~~~~~~~~~~~~~~~~~~~~~ — —
~ ~~~~~~~~~~~~~ ~~

- — ----
~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ _ _ _ _

- -- —H
must be performed. The rates for each activity were obtained directly

from the tuned DFG. Since the worst case assumption that all non-mutually
exclusive gates were open was made , the timing statistics correspond to

peak load conditions.

Pins are signaled primarily through clock firings which occur at
the rat e of 127 and 103 per second in processors 0 and 1, respectively.
Some clocks control more than one pin resulting in 90 and 50 additional -

pin firings per second. Associated with most of these firings are task

starts which occur at the rate of 157 and 224 (worst case) in processors

0 and 1, respectively. In addition , other nodes are activated by pin firings

and task completions resulting in a total of 347 and 227 active nodes proc-

essed per second (again , wor st case).

Notifications of I/O completion occur at the rate of 211 and 105

active notifies, and 5 and 61 passive notifie s per second in processor s

0 and 1, respectively.

43

I -;

~: -~~~
-
~~~~ ==~~ ~~~~~~~~ 

— -
~~~~~~~~~ 

-
~~~~~~~~

-- - -- --

~. 1. 1. 4 irc l4asel m e I~vt a i l ed T i m i t ~~ S t a t ist i c s

4 . 1. 1. 4 . 1 P roces so r ()

I ‘roce s sing l iissc ’ Ot’ -u i i-ence s Total
I’ rese - e’e let re ’ -

- S (t u i r o s r eo n d s) /See- e- iuI (i n i l II second s

.1 7 4 1 I ’ i-o g r a t s s s

I-~acIs els t r y 18, n I- 1~NA 141 .l’~ ~) () 1. t~74
c Is no t i f y . 4 4 . 0 2 1 1 ~~~~~~~~~~~~~~

8. t~37
l~~0 1 -N A 1 ’l 1- ’

IT (- I ’ A S
Vae -h en t ry 18. 6 ENAJ 41 .E (L 0~~(
1~ach notif y 37 . 4 0. 187

0. 280
I- ‘

~ FNAI 4 I,F

NOTI1- V
l 5 i n iso t i fy ~I o _ 4 -‘7 ‘

. 4,4 1:,

Node no t i fy 4~) 2 1’-’ Q 7. 823
10. -16

l- N 1)T 1~ “2 . 8 1- N I I S h 1 4 ~ 7 . 022
4 1114 &) 1 4 1 3 4 V N ‘I ’SK

.55 4 134 1’RCl ’
I 1 3 3 1 - A (CSS

1-~N I 1 1 h S 11)7 . 2 4 1 - N I Y I Sh ‘ 1 2 . - ‘ 7 4
I I ~l4(I’ 24 1-N I)FSh
I 1- .- \ t (S ~-- 2-I I iWP
I i 1 M i - ’ 24 VA~. S S

I 24 r I M 1-
:\C 1IV V 4 4 . 1 ~17 11~ ‘~~‘) ()

N C SN (, ‘)
• ~ 5 0 . ~~c’~

42 / “ r at i e ~
Ne s ou t p el t I~ ~~~

r, 4 2 . 7o ’’
O u t p u t 2 t O 0. ‘v) .’

1 .’ / 10 i - a t io
Ne ’ t s i i t p eit “ 1. 2 I I (1. c(~
(~ eit ~,eit -i ’) 2 ‘ 0 . .‘‘~o
S/ - I r a t io
N e’ ou tpu t I . - - 1 0. 05 1
O u t 1) % i t ‘‘~~. -

,
-l 0~~ 237

4 . ‘04

“~~. 0 I) 4 :\ ((S~~~ 1. 7.~8
I I - A t -

‘. 5 5 I 2) 14A (& 55
I .‘‘~ l- ,- \ ((S

-1 -s

~

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~


Processing Time O c c u r r e n c es TotalP rocedur e -(mic r o s e c o n d s) /Second (mill isecond.)

N R L 63.8 ~
- BACCSS 60 3. 828

+ EACCSS ~ 60 BACCSS
+ SF.NP 4 60 EACCSS

+ 60 SEND
NSI 4 4 , 6 8 0. 277

N TK 40. 4 BAt CSS 157 6. 343
I SCIIFt) + 157 BA(’(’SS

+ 157 SCEIEP
SIGNL

Fach entry 75. 2 - 127 9. 550
Fach additional

p in 48. 2 ~~ 4 . 386
• 13. 936

EPINS 74. 0 24 1. 776
PLINKS

Each entry 26. 8 427 11. 444
1 link posted 24 . 4 59 1. 440
3 links posted 73 .2 4 2 2 . 342

15 . 226
Assembler Programs

(‘NDPRC 7. 0 347 2 . 637

EVLPR D 7. 6 8 0. 06 1

Tota l 9 1, 436
4 ‘15 EN A I I L E
4 157 F N P l S R
4 157 DROP

246 F.ACCSS
+ 246 IIA CCSS

24 TIME
4 60 SEND
4 l~ 7 SC) I T -~fl

(1~’erhe ~ d 1”~I

45

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -
~~~~~~~~~~~ 

~~
_
~xI _ 1 I : -_ _ _ _ _ _ _ _ _ _ _

~~~~~~

3. 1. 1. 3. 2 processor 1

Processing Ti me Occur r ences Tota l
Procedure (microseconds)  /Second (mil l i seconds)

J73 1 Programs
ITCACT

Each entry 18. 6 + ENABLE 60 1. 116
Each notif y 33.0 105 3. 465

4.581
+ 60 ENAB LE

IT CPA S
Each entry 18. 6 + ENABLE 50 0. 930
Each notif y 37. 4 61 2. 281

3. 211
+ 50 EN A B L E

NOTIFY
Static pin 46. 4 2 0. 093
Static node 49. 2 105 5. 166
Dynamic nil 80. 4 + RETCOR 61 4. 904
Dynamic node 102 . 2 + RETCOR 1 0. 102

10. 265
+ 62 RETCOR

ENDTK 52 . 8 4- ENDTSI< 121 6. 389
+ DROP + 121 ENDTSK
+ EACCSS 121 DRCP

+ 121 EAC CSS

ENDTKS 107. 2 + ENDTSE 103 11. 042
4- DROP + 103 ENDT K S
+ EACCSS + 103 DROP
+ TIME ~ 103 EACCSS

+ 103 TIME

ACTIV E 33. 4 227 9. 252

NDI 59. 6 + BACCSS 1 0. 060
EACCSS 4 BACCSS

4 EACCSS

N R L  43. 8 I I3ACCSS 2 0. 088
EACCSS + 2 BACCSS

+ 2 EMI CSS

NTK 40 . 4 + BACCSS 224 9. 050
+ SCIIF D + 224 BACCSS

4- 224 SC BED

46

_ _ _ _ _ _ _ _ _  — —— —--

- 
-
~~~
- -

Processing Time Occurrences TotalProcedure (microseconds) /Second (milliseconds)

SIGNL
Each entry 75.2 155 11. 656
Each additiona l

pin 48. 2 50 2 .410
14. 066

EPINS 74.0 52 3. 848
PLINKS

Each entry 26. 8 390 10. 452
: 1 link posted 24. 4 64 1. 562

12. 014
Assembler Programs

CNDPR C 7. 6 227 1. 725

Total 85. 591
+ 110 ENABLE
+ 62 RETCOR
+ 224 ENDTSK
+ 224 DROP
+ 103 TIME
+ 227 EACCSS
+ 227 BACCSS

Overhead 8. 6%

47

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . —- - --- T ~~~~~~~ -~• — -~--- -- ~~~~~~~~~~~~~~~~~~~ -~~



- -—

3. 1. 1. 4 ITC Detailed Space Statistics

3. 1. 1. 4. 1 Processor 0

Words
J731 Programs

ITCINT 100
EGATES 28
EGATE 34
DGATES 28
DGATE 32
ITCA CT 48
ITCPAS 48
NOTIFY 176
ELGATE 128
ILNK 106
ICNDW 20
DLGATE 126
RLNK 128
DCNDW 22
ENDTK 48
ENDTKS 98
ACTIVE 30
NCSN 86
NDC 86
NDI 70
NIV 52
NGT 52
NRL 76
NSI 28
NTK 70
SIGNL 80
QSIGNA L 48
DQSIGNAL 66
EPINS 78
PLINKS 58
DU NKS 36
ENBLGATE 34
DSBLGATE 34
SGNLEVENT 34
SIGA C 20

Program Data Space 502

2710
J731 Programs
Not U sed by DFG

ENDL C, 24
DNDLG 28
N C! 50
NCN 48
NCS 110
NDP 90
NDSS 96

48

_ _ _  - 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -



- 
~w—.-~~~-- ~~~~

-- •~~~w-~ --

NEP 2
NJN 66
NGS 50
DPINS 84
SIGNLDEVENT 34

682
3392

A ssembler Pr o g r a m s
C N D P R C /E V L P R D 16

Data
(see below) 1685

TOTAL 5093
Overhead 15.5%

!TC Data Structure (words) Occurrences Total

Nodes (ND)
TK nodes 26 20 520
TKS node s 30 11 330

nodes 12 5 60
RU  nodes 12 7 84
Sl nodes 8 1 8
IV nodes 10 2 20
GTN nodes 10 3 30
DC nodes 14 4 56
CSN nodes 10 1 10
Padding 20 1 20

1138

Pins (PIN) 4 43 172

Links Vector (LNK ) 1 31 31

Gate s 4 17 68

Link Gates (LGT) 8 18 144

Notifi cation
Controllers (NTF) 4 33 132

Misc . Global Variables  1 4 4

rota l 1685

49

I 
__________________ ___________

— -~~~~~~~~~~~~--~ -~~~~~~~~~~ _ _



3. 1. 1. 4. 2 Processor I

Words

J73 1 Programs
ITCINT 100
EGATES 28
EGATE 34
DGATES 28
DGATE 32
ITCACT 48
ITCPAS 48
NOTIFY 176
ELGATE 128
ILNK 106
ICNDW 20

• DLGATE 126
R L NK  128
DCNDW 22
ENDTK 48
ENDTK S 98
ACTIVE 30
ND ! 70
NRL 76
NTK 70
SIGNL 80
OSIGNA L 48
DQSIGNAL 66
EPINS 78
PLINKS 58
ENBLGATE 34
DSBLGATF 34
SIGNLEVFNT 34
SIGAC 20

Program Data Space 502
2370

J73 1 Programs
Not Used by DFG

ENDLG 24
DNDLG 28
NC ! 50
NCN 48
NCS 110
NCSN 86
NDC
NDP 90
NDSS ‘16
NFP 2
NW 2

50

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
r



TE~ . ~~~~~~~T::~~~~~~~
; 

_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NJN 66
NGS 50
NGT 52
NSI 28
DPINS 84
DLINKS 36
SIGNLDEVENT 34

H 1022
3392

Assembler Programs
CNDPRC/EVLPRD 16 16

Data
(see below) 743

Total 4151
Overhead 12. 7%

ITC Data Structure Size Occurrences Total

Node Table - -

TK nodes 26 10 260
TKS nodes 30 6 180
DI nodes 12 1 12
RU nodes 12 3 36
Padding 18 1 18

506
Pins 4 15 60

Links Vector 1 5 5
Gates 4 7 28
Link Gates 8 7 56
Notification

Controllers 4 21 84
Misc. Global Variables 1 4 4

743

ci

- 1
I -- -

- --~~~~~~~~ - - --~~~~~- -~~~~~~~------~~~~~~~~~~~~~~~~~~~-—--~~~ ~~ ~~~~~~~~~~~~~~~~ - - - - -~~~~~~

- --— —-
_ _

3. 1. 1. 5 i’r c Sensitivity Anal ysis

The n-iost important factors affecting ITC overhead are the number

of nodes and the rates at which they become active . The rate at which ITC

processes active nodes is 347 per second in processor 0 and 227 in proc-
essor 1. Handling of these active nodes and posting of th eir attached links

accounts for 55% of the time spent in ITC. In particular , active node dis-

patching alone (procedure ACTIVE) accounts for approximately 12% of

ITC overhead .

Handling of DTF I /O complete notifications at the rates of 216 in
processor 0 and 167 in processor 1 accounts for approximately 20% of ITC
time.

Signaling of pins proceeds at the rates of 228 and 205 in processors

0 and 1 accounting for approximately 15% of ITC overhead .

52
l

-

~~~~~~~~~~~~~~~~~~~~~~ ~~~-j~~~ - ~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~


— - - - -
~ ~~

-.——-—----—.—--- ---— -- -—-

3. 1. 2 TIM Baseline Statistics

Time fSecond SpaceProcessor (milliseconds) (words)

Processor 0
J73 1 Programs 45. 539 589
Assembly Language
Programs 37. 472 159

Tables 140

Total 83. 011 888

Cverhead 8. 3% 2 . 7%

Processor 1 -

3731 Programs 28.413 589

Assembly Language
Programs 35, 119 159

Tables 60

Total 63. 532 808

Overhead 6. 1% 2 . 5%

3. 1. 2. 1 Approach

The Timing cluster has several p r imary tasks:

• maintain system time

• notif y tasks when clock interrupts occur

These tasks are performed by maintaining a list of clocks in each processor.

Processor 0 has 15 clocks; processor I has 5. Clock A interrupt s are
fielded by INTCKA , which invokes C LOCKQ to signal the appropriate tasks .
It also maintains the clock queue by Inserting the clock with the new f i r ing

time onto the queue in the appropr ia te place. The procedure SETCLOCK is
called to set t imer A to in terrupt at the f i r ing time for the f irst clock on the
list. If the t ime as a l r e a d y passed , SETCLOCK will r eturn a value indicating
this .

Cloc k B is used to synchronize t ime in each processor. This is done
by IN T C K B , which is called once every k ’ . 553 7 seco nds.

—
J—i~-

— -:
~~~~~~~~~~~~~~~~~~~~~~~~~~~

3. 1. 2. 2 Definition of TIM Activities f
The processor may be in the executive or an app lication task

when an interrupt occurs. There are 127 clock timings per second

on the processor 0 DFG , and 103 for processor 1. Of these , at most 90

on processor 0 and 67 on processor 1 are actual interrupt s causing INTCKA

and CLOCKQ to be entered. The remainder are simultaneous fir ings for

which only one interrupt occurs.

The scheduler must also manipulate times in order to schedul e

application tasks. In addition, TIME is called by a number of clusters.

54

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
__ __

i- _ • —

-
_ _ _ _ _

3. 1. 2. 3 TIM Baseline Detailed Timing Stati stiç~

3. 1. 2. 3. 1 ProcessOr 0

process~flg Time Occurrences Total
Procedure (microseconds) /Second (milliseconds)

3731 Programs
CLOCKQ

Time s entered 375. 7 + ENABLE 90 33. 814

Simultaneous
firing 316. 9 37 11. 725

45. 539
+ 90 ENABLE

Assembler Programs

SETCUOCK
Timer set

(worst case) 21. 8 90 1. 962

TSUM
From CLOCKQ 20.4 127 2. 591

From SCHED 20.4 157 3. 203
5.790

TGTR
TRUE

from CLOCKO 23. 8 655 15.597

FALSE
—

from CLOCKQ 21. 8 127 2.769

TRUE
from SCHE D 23. 8 236 5. 617

FALSE
from SCHED 21. 8 235 5. 123

29.106

TIME 12. 8 48 0. 614

Total 83. 011
+ 9 0 ENABLE

Overhead 8. 3%

55

!) ~
-

-- --
~~

-
~~

-- -- - - -
~~~~~~~

-

~~~~~~~ 
- - —

~~~~
- -

~~~
-

-— - -

-

- -•-.

~

-, —,i•:
~

!-___ - - —

_ _ _ _


~~~~~~ --~~~~~--~~-—

3. 1. 2. 3. 2 Processor 1

Processing Time Occurrences TotalProcedure -(microseconds) /Second (milliseconds)

J73 1 Programs
CLOCKQ

Times entered 296. 4 + ENABLE 67 19. 859
Simultaneous
firing 237. 6 36 8. 554

28.413
+ 67 ENABLE

Assembler Programs
SETCLOCK

Timer set
(worst case) 21 , 8 67 1. 461

TSUM
— From CLOCKQ 20. 4 103 2. 101

From SCHED 20 . 4 224 4. 570

TGTR 
6. 671

TRUE
from CLOCKQ 23. 8 285 6. 783

FALSE
from CLOCKQ 2 1. 8 103 2. 245

TRUE
from SCHED 23. 8 336 7. 997

FALSE
from SCHED 21.8 336 7.325

24 . 350

TIME 12. 8 206 2 . 637

Total 63. 532
- 

I 

+ 67 ENABLE
Overhead 6. 4%

I-

L

56



- ~~~~~~~~~~~ — - 
~~~~~~~~ 

—
—~-~ --.- -—

* — -_ . . — .. —

3. 1. 2. 4 TIM Baseline Detailed Space Statistics

3. 1. 2. 4. 1 Processor 0

Words
- J73I Programs

TIM IN T 20
STARTCLOCK 112
CLOCKQ 154
SETALARM 102
CLRALARM -

(not used) 78
Program Data Space 123

589
Assembler Programs

Interrupt handlers 40
SETCUOCK 24
TIME 16
TSUM/TDIF/TGTR 64

Program Data Space 15
159

Data
Clock Table 136
Miscellaneous items 4

140
Total 888
Overhead 2. 7%

3. 1. 2. 4. 2 Processor 1

J731 Programs
Same as Processor 0 589

Assembler Programs
Same as Processor 0 159

Data
Clock Table 56
Miscellaneous items 4

60
Tota l 808
Overhead 2 . 5%

57

-
-__ - - - - - - -I--—,--~--- ~~~~~~~

——- -

LIL ~~~~~~~~~~~~~~~ ~~~~~~

3. 1. 2 . 5 SensItivity Anal ys is

The pr ime determinant of overhead is the s t ructure of the clock

queue . Each attempt to insert a clock on the list requires 57 . 0 micro-

seconds for each clock on the list with an ear l ier f i r i n g t i m e . Processors

0 and 1 average 5. 16 and 2. 77 clocks , respectivel y, for each insert. This

Is 3. 7% overhead on processor 0 to insert clocks 127 times each second ,

and 1. 6% overhead for processor 1.

Two othei- factors affecting overhead a re beating clocks and missed

f i r ing t in~~-~ . When two or mo re clocks fire at the same t ime , onl y one clock

in te r rup t is taken. When a f i r in g tim e i s missed , the interrupt Is processed

even though the physical interrupt did not occur. Both of these actions take

less time than actual interrupts.

58

~
- - ,

_ _ _ _ _ _ -

- -- ___ —
~~

-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~ —~~~

-r ---

3. 1. 3 DA C Baseline Statistics

Processor Time/Second Space
(milliseconds) (words)

Processor 0
J731 Programs 28. 479 1044
Assembly Language
Programs 1.644 16
Tables 327

Total 30. 123 1387

Overhead 3. 0% 4. 2%

Processor I
J731 Programs 56. 389 1044
Assembly Language
Programs 1.776 16
Tables 252

Total 58. 165 1312

Overhead 5.8% 4.0%

3. 1. 3. 1 Approach

The Data Access Control cluster manages access to global dat a

(data accessed by more than one task), and initiation of I/O activities

(via DTF). DAC interfaces with ITC via the interface procedures BACCSS
and EACCSS. These procedures process lists of access controllers which
contain information about the type of access required. According to the

access typ e, control is dispatched within DAC to process each requested
access ope rat ion.

3. 1. 3. 2 Definition of DAC Activities

Processing of nodes (primarily task nodes) by I TC results in 246
and 227 calls to BACCSS and EACCSS per second in processors 0 and 1,

59

-
-- - - -

- - - - _ — —- — - — - r~
-_
~~

~ - — - - - — -

~~~~~~~~~~~~~~~~



— -  
---.

~~ 
-.. - ----------_--

~~~~~~~
------- -_--——-.,-

~~
- - —.- -- - ---- -- - — - _- - -- - . —---_- _ __

- -

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —

respect ivel y. l -a  cli call  I f lV O 1 V C M  the proce~.~ iiig of - in  acce s s  list result —

ing in a number  of accesses of each possible type o c c u r r i n g  each second.
The rates at which each access type occurs were collected from the rate
of each node activation together wit h the accesses required by that node

as specified on the tuned DFCI.

~L. ~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-


~~~~~~
- --- - - - -----~~~~~ - - - --, — - - - - ---- --

3. 1. 3. 3 DAC Baseline Detailed Timing Statistics

3. 1. 3. 3. 1 Processor 0

Processing Time Occurrences TotalProcedure - -(microseconds) /Second (milliseconds)

J731 Programs
BACCSS

Each entry 20. 4 246 5. 018
Each AC

processed 24. 8 130 3. 224
8. 242

EACCSS
Each entry 20.4 246 5. 018
Each AC

processed 24. 8 172 4. 226

9. 284
BWD 42. 8 + GETCOR 32 1.370

+ 32 GETCOR
ESWS 48. 6 34 1. 652

BSR S 68. 4 10 0. 684
CSTN 38. 0 + SEND 8 0. 304

+ 8 S E N D
CST 33. 4 + SEND 25 0. 835

+ 25 SEND
USTN 32.0 + SEND 151 4. 832

+ 151 SEND
UST 25. 8 + SEND 10 0. 258

+ I O SEND
UDT 31. 8 -I- SEND 32 1. 018

+ 32- SEND
Assembler Programs

CPYD
Each entry 16. 4 44 0. 722
Words copied 2. 0 461 0. 922

1. 644
Total 30. 123

+ 32 GETCOR
+ 226 SEND

Overhead 3. 0%

61

F.



—--- - - - - -- -—---
— 
—— — — — - —— —- —--_— — —a—- I

3. 1. 3. 3. 2 Processor 1

Processing Time Occurrences  TotalProcessor (microseconds) /Second (milliseconds)

J731 Programs
BA C CSS

Each entry 20 . 4 227 4.631
Each AC

processed 24 . 8 407 10.094
14. 725

EACCSS
Each entry 20 . 4 22 -7 4.631
Each AC
processed 24.8 445 11.036

15. 667

BARD 31.8 352 11. 194

ERD 26. 8 352 9. 434

ESWS 48.6 40 1.944
USTN 32 . 0 + SEND 103 3. 296

+ 103 SEND

UST 25. 8 + SEND 5 0. 129
+ 5 SEND

Assembler Program s
CPYD
Each entry 16. 4 40 0. 656
Words copied 2. 0 560 1. 120

1. 776
Tota l 58. 165

+ 108 SEND
Overhead  5~ 8%

62

__ __ __ __ _  —---~~~~~~~~~ ~~~~~~~~~~



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - —-—-—- - - -— ~

——

3. 1. 3. 4 DAC Baseline Detailed Space Statistics

3. 1. 3.4. 1 Processor 0
Words

J731 Programs
DACINT 150
BACCSS 70
EACCSS 100
BARS 36
BWD 42
ESWS 46
CSTN 34
CST 30
USTN 28
UST 22
UDT 34

Program Data Space 158
756

- 

- 3731 Programs
Not Used by DFG

BARD 34
BSR D 22
BSRS 20
EA WD 54
EA WS 38
ERD 40
ESWD 80 288

Assembler Programs
CPYD 16 16

Data
(see below) 327

Total. 1387

Overhead 4. 2%

DAC Data Structure Size (words) Occurrences Total
Access Controllers (A) 4 62 248

Dynamic Storage
Controllers (DSC) 4 1 - 4

Static Storage Controllers (SSC) 4 5 20

Extra Static Blocks (SSB )
for extra copies of 4 3 12
certain data blocks 17 1 17

26 1 26
55

327
63

I ,

~~~~~~i=i~~~~~~~~
:T

- - - - _ _

- ——--- — — -——- ~-

3. 1. 3. 4. 2- Processor 1

Words

J73I Programs
DACINT 150
BACCSS 76
EACCSS 100
BARD 34

H BARS 36
ERD 40
ESWS 46
USTN 28
UST 22

Program Data Space 158
690

J731 Programs
Not Used by DFG

BSRD 22
I3SRS 20
BWD 42
EA WD 54
EA WS 38
ESWD 80
CSTN 34
CST 30
UDT 34 354

Assembler Programs
CPYD 16

Data
(see below) 252

Total 1312

Overhead 4~ 0%

DAC Data Structure Size Occurrences Total

Access Controllers (AC) 4 36 144

Dynamic Storage
Controllers (DSC) 4 10 40

Static Storage
Controllers (SSC) 4 3 12

Extra Static Blocks (SSB)
for extra copies of 8 2 16 -

-

certain data blocks 20 2 40 56
252

64

—.
~~~ - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~---


I
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _

3. 1. 3. 5 DAC Sensitivity Analysis

The important factors contributing to DAC overhead are the number

of access lists processed per second and the number of access controllers

in these access lists. Management of the processing of these lists (not

including the processing of each individual access controller ) accounts for

approximately 55% of DAC overhead while individua l access controller

processing account s for the remaining 45°Io.

In processor 0 , 24% of DAC time is spent processing I/O request

access controllers while in processor 1 only 6% is spent here . In both

processors the rates at which static data is copied is fairl y low substa n-

tial increases in these rates would be required if more frequent task pre-

emption were allowed. For example , if 400 static blocks averaging 10

words had to be copied per second , DAC overhead in processor 0 would

nearly double. In processor 1 a substantial amount of read access to

dynamic data is handled (352 accesses per second) accounting for 35%

of DAC overhead.

65

~ —- —~~~~~~~-- - --—~~~~ -~~~~~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--- - -



3. 1. 4 SCH Baseline Statistics

Time/Second Space
Processor (milliseconds) (words)

Processor 0
J731 Programs 34. 635 332
Assembly Language
Programs
Tables

Total 34. 635 332

Overhead 3.5% 1. 0%

Processor 1
J731 Programs 49. 415 332
A sseinbly Language
Programs

Table s

Total 49. 415 332

Overhead 4.9% 1. 0%

3. 1. 4. 1 Approach

The Scheduling cluster orders the execution of app lication tasks.
It interfaces with ITC and DAC via procedure SCHED which is called to
schedule a task for execution. SCH maintains a queue structure which
holds all scheduled tasks not yet executed and all tasks which have been
partially executed and then preempted. Tasks  in the scheduling queue
are ordered by deadline and by preemption rules.

When a task completes , DROP is called by ITC to remov e the
task £rom the scheduling queue . The dispatcher (DSP) examines the
top of the scheduler queue and either restarts  the activ e task or starts
a new task . if a new task is started , AUTASK is called to manipulate
the queue so that the task is on the activ e task  stack .

66



-

~~

-

~~~

—

~~~~~~~

---- --- 
_ 

_ _ _- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
---- - - ---.-. — - -

~~~~~~~ 
-.

~~~
.-_-

~~~~~~~~
-- -

_ _ _ _ _ _ _ _ _ _ -“--5--- -—--
-- - - S

3. 1. 4. 2 Definition of Activities

The important parameter affecting SCH overhead is the number

- - of task starts per second (157 in processor 0, and 224 in processor 1).

Each task execution implies one SCHED call , one AUTASK call , and

one DROP call. Calls to SPRTIM (two per task start) are not included

in the baseline timing statistics but are discussed separately in Section

3.1. 4.5.

At each SCHED call the queue is searched until the fi r st pre-

ernptable task is found (usually the idle task). The new task is inserted

into the queue of tasks scheduled to preempt that task according to its

deadline.

IL. t
67

_ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _

- -

3. 1. 4. 3 SCM Baseline Detailed Timing Statistics

3. 1. 4. 3. 1 _Processor O

Processing Time Occurrences TotalProcedure . -(microseconds) /Second (mill iseconds)

3731 Programs
SCHED

Each entry 106. 8 + TSUM 157 16. 768
Each task not + TGTR

preemptable 28.4 157 4.459
Each task

more urgent 24 . 2 + TGTR 157x2 7. 599
28. 826
+ 157 TSUM
+ 471 TGTR

AUTASK 12. 4 157 1. 947
DROP 24.6 157 3.862

Total 34. 635
+ 157 TSUM
+ 4 7 1 TGTR

Overhead 3. 5%

3. 1. 4.3. 2 Processor 1

Pr ocessin~~Tin -t e Occurrences TotalProcedure - -(microseconds) /Second (mil l iseconds)

3731 Programs
SCHED

Each entry 106. 8 + TSUM 224 23 . 92 -3
Each task + TGTR

not preemptable 28. 4 224 6. 362
Each ta sk

more urgent 24 . 2 + TGTR 224x2 10. 842
41. 127
+ 224 TSUM
+ 672 TGTR

AUTASK 12- . 4 224 2. 778
DROP 24. 6 224 5. 510

Total. 49. 415
+ 224 TSUM
+ 672 TGTR

Overhead 4~
()O ~

68

-
- -

~~~~~~~i~~~~~~~~~~_ :~~--~~~~~~ _ _ _  - -



“~~T ‘IT~~~~~~~~~:-~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

H

3. 1. 4. 4 SCM Baseline Detailed Space Statistics

3. 1. 4. 4. 1 processor 0

Words

J731 Programs

SCHINT 12
SCHED 120
AUTASK 12
DROP 28 - -

SPRTIME 88

Program Data Space 72
332

Data
None _____

Total 332

Overhead 1. 0%

3. 1. 4. 4. 2 Processor 1
Words

J731 Code
Same as Processor 0 332

-
~~ Data

None ____

Total 332

Overhead 1. 0%

L~
—

~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~ 
—=-~~__--_ — ~

—
~~
---‘--

~~ - -- -~~ ‘-5-  ____ _____



~~~~~~~ ii~-~~~

3. 1. 4. 5 SCH Sensitivity Analysis

Scheduling is the most frequentl y occurr ing activity (157 per second

in processor 0 , 224 per second in processor 1) which requires a search.

However , the size of the queue at any given time is not part icular ly la rge

since it onl y includes ta sks read y to run which have not been run. Henc e

much of the scheduler overhead (approximately 50%) is due to ioop setups

in SCHED and actual insertion of tasks into- the queue. The tota l time

required by SCH is proportional to the number of task s tarts /sec .

Part of the work performed in scheduling is the numerous calls

to TSUM and TGTR to perform double precision functions. The overhead

for these calls was included in the TIM cluster baseline timing statistics.

Had it been included with SCH, the SCH overhead would be approximately

4(~I7 hig her than it was in both processors.

Overhead involved in computing spare time for all tasks in the

schedule queue was not included because it is essentially a testing tool.

The overhead was , however , computed separately and the timing statis-

tics are presented below. Overhead for call s to TIME , TSUM , TGTR

and TDIF are included .

Spare Time Computation Timing Statistic s

Processor 0

S PR TIME
Each entry 53. 0 157 x 2 16. 642
Each task in queue 122.4 157 x 2 x 3 115. 300

To tal 131. 943

Overhead 13. 2%

Processor 1
S PR T IME

Each entry 53. 0 224 x 2 23. 744
Each task in queue 122. 4 224 x 2 x 3 164. 506

Total 188. 250
Over h ead 18. 8%

70

—

f
~
—

~~~~~~~ 
-

— —- - - — - - — — ~~~~~~~~~~ --- -“- — - ---~~~~-- - --—- —~~~~~- —--_5-



- -.5-- -

3. 1. 5 DTF Baseline Statistics

Time/Second SpaceProcessor (milliseconds) (words)

Processor 0
J731 Programs 57.5 15 1192
Assembly Language
Programs 18. 260 946
Tables 1346

Total 85. 775 3484

Overhead 8. 6% 10. 6%

Processor 1
J731 Programs 70 .543 1198
Assembly Language
Programs 18. 260 946
Tables 882

Total 88. 803 302-0

Overhead 8.9% 9. 2%

3. 1. 5. 1 Approach

Processor 0 is specified as the head processor.  Thi s requires it
to perform certain tasks n~~ done b y processor 1. These include:

• Synchronizes system time in the other processor.

• Coordinates system initialization by taking master
control of the bus , sending an Initialization signal ,
and passing bus control to the nonhead processor.

Tasks that are performed by both-processors  include:

• Error recovery and retry associated with bus commands.

• Passing control of the bus from processor to processor
according to a deadline priori ty scheme.

• Dynamic construction of command word lists from a
fixed memory list as event s occur.

71 

- --

-
5- 

—5- - - __ _S_ __~~~~___ ___ ____~~_4_ __ 5____S__ _ _~~__ -



— - - ~~_ - - - -5_ - -- 5--~~~~~~~~ ----.- --~~~~~~~ 5--~~~~~-— 

~1

Two of these tasks are the pr ime contributors to t ime overhead :

• Passing bus control uses 4. 8% of processor 0 , ~ 0%
of processor 1.

• Construction of command word list s uses 4 . 0% of
p rocessor 0 , 1. 9% of processor 1.

3. 1. 5. 2 l)efinition of DTF Activit ies

The procedure BC IZ is responsible for controlling the bus. There

is a tradeoff between the overhead associated wit h the number of times it

passes  bus control and the abilityto meet response requirements  if-the bus is

held for too long. The timing statistics are based on an average t ime for

holding the bus of five millisecond s , thereb y taking control and re l inquishing

it 100 times each second. The average  t ime ho lding the bus is controlled b y

two factors:  the length of the command word list and the amount of bus fill

t ime introduced. Bus fill time is the time the processor wit h bus ma ster

control uses the bus to receive dummy data from the othe r processor .  rhe

bus fill time can be set within the BCI2 p rogram.

The system response requirements are  such that an average bus

hold time In excess of ten milliseconds would be adequate , thus  cutting

the  control passing overhead by more than one half. However , it is felt

that a five millisecond average would be more representat ive for most

5 yst ems.



— ~~~~~~~~~~~~ r~~~~~~’—’-~- —.--.-

—--—-- -- _ _ _ _

3. 1. 5. 3 DTF Baseline Detailed Timing Statistics

3. 1. 5. 3. 1 Processor 0

Processing Time Occurrences Total
Procedure (microseconds) / second (milliseconds)

37 q Program s

DTFACT
ITCACT to be queued 45. 8 + QUEUE 90 4. 122
No ITCACT notification
r equirement 38 . 8 10 . 388

Dynamic storage data
transmItted 21. 6 f RETCOR 32 . 691

5. 201
+ 32 RETCOR calls
+ 90 QUEUE calls

DTFPAS -

Each entry 158. 0 100 15. 800

ITCPA S to be queued 1. 4 + QUEUE 5 . 007

Each block of data rec ’d 2-7. 4 5 . 137
15. 944

+ 5 QUEUE calls

DTFKEY 63. 4 100 6. 340

SENDYN 66 .6 32 2 . 130

SEN D
Allocated entry 76 . 2 195 14. 860

Allocated additional
command word/entry  55 . 8 262 14. 620
Allocated notif y 15. 8 195 3. 080
Unallocated entry 104 . 6 40 4 . 180

Unallocated additional
command word/entry 84. 2- 10 - 840
Unallocated notif y 15. 8 20 . 320

37. 900
Assembler  Programs

BCIZ
Take control of bus 114.6 100 11. 460
Relinquish control of bus 68. 0 100 6. 800

18. 260
Total 85~ 775
Overhead 8. o°-’~

7~

——-  - _ _ _ _ _

- -5 ---- -—



- - --- ~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.—~~~~~~~~ 

~~~~~~~~~

_

~~~~~~~~~~~

_

~~~

-.=

~~~~~~~~~~~~~~ 

--

f

3. 1. 5.3.2  Processor  1

Processing Time Occurrences TotalProcedure (microseconds) / second (milliseconds)
373 1 Programs

DTFA CT
IT CACT to be
queued 45. 8 + QUEUE 60 3. 984

No ITCACT
notification req. 38. 8 40 1. 552

5. 536
+60 QUEUE call s

DTFPAS
Each entry 364. 0 100 36. 400

ITCPAS to be
queued 1. 4 + QUEUE 50 . 070
Each block of
statically allocated
data received 27 . 4 5 - 137

Each block of
d ynamically al loca t ed
data received 47. 4 + C,ETCOR 60 2. 844

- 39. 451
+60 GETCOR calls
+50 QUEUE calls

DTFKEY 63. 4 100 b . 340

SEND

Each entry 76. 2 110 8. 382
Each additional
command
word /en t ry  55 . 8 165 9. 207
Each notif y 15. 8 100 1. 627

19.216
Assembler  Programs

BCI2
Tak e control of
bus 114.6 100 11. 460
Relinquish
control of bus 68. 0 100 6. 800

18. 260
Total 88. 803
Over head

74

L - _ _  _ _ _  - -

-5 
._5 _

_ ___ ___ _ _ _
~~~~~~~~

__ _ _ _ _ __ - 5 - -—

3. 1. 5. 4 DTF Baseline Detailed Space Statistics

3. 1. 5. 4. 1 Processor 0 Words

J7 31 Programs
RDYBUS 24
DTFINT 190
DOWN 52
FLIP 168
DTFPAS 208
DTFACT 102
DTFKEY 62
SENDYN 62
SEND 208
Program Data Space 116

• 1192

Assembler Programs
BCIU interrupt handlers to transfer control,
synchronize time, support monitoring of
other processors, do all bus message retries
and determine failures
BCIU initialization 88
BCIU interrupt and error handling 846
setting new priority 12

946

Data
DEVTBL - Device list table 36
CWTBL - Command word table 636
CWQCWP - Queued CW indexes 41
MNOTEY - Master/ITC notification buffer 110
RNOTFY - Remote/ITC notification buffer 24
RCODE - Rernote/ITC notification codes 5
FLPDEV - Failed device CW queue 40
Miscellaneous Items J731 21
Subaddress Pointer Words 118
Storage for Executive ‘Signals ’ 6
Scratch Storage 32
Priorities [left as 4 Processor Case] 5
Miscellaneous Items As sen-ibler 32
Command Word Storage 240

1346

Tota l 3484
Overhead 10. 6%

-
—

_ _ 5 -

75 ~~

-5-

-5----—-5-----5 - 5-55---—-- —:--—-—

3. 1. 5. 4. 2 Processor 1

J731 Programs
Same as Processor 0 1192

As sembler Prog ram s

Same as Processor 0 946

Data
DEVTBL - Device list table 40
CWTBL - Command word table 246
CWQCWP - Queued CW indexes (not used) 1
MNOTFY - Ma ster/ITC notification buffer 30
RNOTFY - Rernote/ITC notification buffer 70
RCODE - Remote/ITC notification codes 15
FLPDEV - Failed Device CW Queue 30
Miscellaneous Items J731 21
Subaddress Pointer Words 110
Storage for Executive ‘Signals ’ 12
Scratch Storage 32
Priorities [left as 4 Processor case] 5
Miscellaneous Items Assembler 30
Command Word Storage 240

882

Total 3020

Overhead 9 .2%

3. 1. 5. 5 Sensitivity Analysis

There are two primary factor s affecting the overhead of DTF. The
first is the tradeoff between the overhead associated with each bus control

transfer and meeting response requirement s. The amount of overhead
increases linearly wit h each t ransfer of control; however , if the number
of transfers is reduced , the average length of time the bus is controlled

-
~ -~

between transfer of control increases and it become s more difficult to meet

response requirements. 9
The second factor is the amount of data that must be t ransferred be-

tween processors. The effect on the overhead can be seen by examining the

executives. Each time control is received,DTFPAS is entered. In processor 0,

where up to five blocks of data can be received , each entry takes 158. 0 micro-
seconds to process , contributing a total of 1. 6% to overhead. However, processor 1

canreceive up to fifte en block sof data. This requi res 364 . 0 microsecond s toprocess

for a total of 3. 6% overhead. This is an increase of 2%, directly attributable to the

additional ten blocks of data t hat can be transferred.
76

- - - --5-5- - ~~~~~~-— -

3. 1. 6 MSM Baseline Statistics

Time/second SpaceProcessor (milliseconds) (words)

Processor 0
J731 Programs 6. 829 258

Assembly Language
Programs
Tables 68

Total 6. 829 426

Overhead .7% 1. 2%

Processor 1
J731 Programs 18. 989 358

Assembly Language
Programs
Tables 714

Total 18. 989 1072

Overhead 1.9% 3.2%

3. 1. 6. 1 Approach

Ea ch execiitive maintains a list of f ree blocks. Each allocated block

will be 34 words long and use space from the first block on the list. When

a block of storage is returned , it is placed in the list in ascending order by
address. If a block is contiguous at either end , it will be compacted with
the contiguous block to keep one larger block on the list.

3. 1. 6. 2 Definition of MSM Activities

When storage is allocated by a call to GETCOR . it comes from the

first block of storage that is large enough. The block may be the exact size

required, or it may be larger leaving a smaller block of the remaining space
on the list.

77

__
——5---- - - --5-—- -

—
—y---

~ ~~~~~~~~~ —
---- -“5 — —5- - —

-5—---- ~~~~~~~ ~~- - -w~~
_ -

When a block of storage is returned , it may be contiguous to other

blocks on the free list . In addition , it is placed in the appropriate place

on the list.

In processor 0 , there are at most two GETCOR calls in a row

followed by two RETCOR calls. In processor 1, there are fourteen

GETCOR calls. This is followed by at most seven GETCOR calls before

any storage is returned.

3. 1. 6. 3 MSM Baseline Detailed Timing Statistics

3. 1. 6. 3. 1 Processor 0
Processing Time Occurrences TotalProcedure (microseconds) /second (milliseconds)

3731 Programs

GETCOR 101. 0 32 3. 232

RET COR
First on list , contiguous

at end 109. 4 24 2. 626
First on list , not

contiguous at end 105. 0 4 . 420

Second on list , contiguous
both sides 137, 8 4 . 551

3. 597
Tota l 6. 829
Overhead .7%

3. 1. 6. 3. 2 Processor 1
Processing Time Occurrences Total

Procedure (microseconds) /second (milliseconds)
3731 Programs

GETCOR
Exact fit 151.6 31 4.700

Extra space 160 . 8 31 4. 985
9. 685

RETCOR
Not contiguous 137. 8 15 2. 067

Contiguous both ends 154. 2 15 2. 313

Contiguous front 149. 8 16 2. 397

Contiguous end 142. 2 16 2. 275
9. 298

Tota l 18. 983
Overhead 1 .9%

78

-5-- T T ~~~I j


~~~

r

~~~

c 5 - . -

~~~~~~~~~~~~

- - - -_-

~~~~

- - -—

5- —-- -

— 5 -

3. 1. 6. 4 MSM Baseline Detailed Space Statistics

3. 1, 6. 4. 1 Processor 0

Words

3731 Programs
GETCOR 142

RETCOR 166

MSMINT 18

Program Data Space 32
358

Data
Two blocks 68

Tota l 426
Overhead 1. 2%

3. 1. 6. 4. 2 Processor 1
Words

3731 Programs
GETCOR 142

RETCOR 166

MSMINT 18
Program Data Space 32

358

Data
Twenty-one blocks 714

Total 1072
Overhead 3 . 2%

3. 1. 6. 5 Sensitivity Analysis

The primary factor affecting both space and time Is the sequencing

of calls to GETCOR and RETCOR . If the calls are interspersed and random ,

then a free list is created. As the free list get s longer , the time to process

and the number of blocks of storage required increases linearly.

“ 5- 5-”'

-
_ _ _ _ ~~~~~~~~~~

“
‘—-

-5 _7-”,
~~~~~~~-- ,~~~~~

3. 1. 7 DSP Baseline Statistics

Time /Second SpaceProcessor 
- 

(mi1lisec~ nd s ) (wor ds)

Processor 0
J731 Programs 24.361 110

Assembly Language
Programs 14. 4 15 164

Tables 69

Total 38. 776 343

Overhead 3.9% 1.0%

Processor 1
J731 Programs 24 . 867 110

Assembly Language
Programs 21. 002 164

Tables 69

Total 45. 869 343

Overhead 4.6% 1. 0%

3. 1. 7. 1 Approach

The Dispatching cluster controls the assignment of the processor
to executive and app lication tasks. Tasks to be run in executive mode are
queued (b y in ter rupt  handlers)  through calls (some inline) to QUEUE . Whe n-

ever an executive task completes it returns through the DSP program
DQUEUE which dispatche s the next executive task in that queue until it
is empty.

When all executive tasks are complete , the dispatcher either
restarts the app lication task which was interrupted or starts a new more
urgent application task.

80

I
I j
~ 

________________—5 -- 
-=-5- 

- 

- - 

---5 —~~~~~~~~~ -~



- - - ---5 ..-- ~~~~ -5 - - - --- 
- - 

- --~~~~~~~~~ --~~~~~~~~~~ I~-

~~~~~~- - -

3. 1. 7. 2 Definition of DSP Activities

The dispatcher tends to be the most active cluster in the executive.

Entries via DQUEUE occur at each interrupt (ZOO bus and 90 clock in

processor 0 and 200 bus , 67 clock in processor 1) and at each task comple-

tion (157 in processor 0 and 224 in processor 1). Hence , assuming worst

case , tasks are resta rted 290 and 267 times a second , and started 157 and

224 times a second in processor 0 and 1 respectively. Restarting inter-

• rupted or preempted tasks involves manipulation of the stack and restoring

~f all registers and the machine state. Starting of new tasks requires a

call to the schedule function AIJTASK and allocation of a stack frame.

DSP also contains assembly programs ENABLE and DISABL which

are called by other clusters.

81

— ~~~~~~~~~~~~~~~~~ —
~~~~~~~~~~~~~~

-—

~~~~~~~~~~~~~~ 
-
~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~

—‘ ,‘,.- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~ 
—5--” - —

-5-—.-—-——-- 5 -  —

- 5 -5 - - — - 5 — -  — ~~~~~~~~~~~~~~~~ 

--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

-
3. 1. 7. 3 DSP Baseline Detailed Timing Statistics

- - 3. 1. 7. 3. 1 Processor 0
Processing Time Occurrences Total

Procedure . - -(microseconds) /Second (milliseconds)

3731 Programs
QUEUE 20. 6 95 1. 957

DQUEUE
Each entry

Task ends 157
DTF interrupt returns 200
TIM interrupt returns 90

16. 2 447 7.241

Each item queued
DTF queueing 95

Interrupts in executive 87 (30~”~ of 290)

24. 8 182 4. 514

11. 755

DSPTSK
Interrupt returns 26. 0 290 7. 540
Task starts 19. 8 + AUTASK 157 3. 109

10. 649
+ 157 AUTASK

Assembler Programs
CEXCPR 6. 0 182 1. 092

RSTART 24 . 6 290 7. 134
I -

START 8. 8 157 1. 382

ENDTSK 7. 8 157 1. 225

ENABLE 4.4 185 0.814

DISABL 4.4 629 2.768

Total 38. 776
Overhead 3. 9%

82

-— - 5 -— - ~~~~~ - - -
—_- 5 - - - ---— - -5-

— - — --.-

~~~

- 
—

~~~~~~
—--

~~~~~~~~ ~~~~~~~ - _ _ _ _



~~~ --5~~~~- -- - --—-- 
-~~~~~ -

_ _ _ _ ~~:~j.=”•=5-: ~~~~~ .
5-

- - -5
5
’

3. 1. 7. 3. 2 Processor I

Processing Time Occurrences TotalProcedure (microseconds) /Second (milliseconds)

3731 Programs
QUEUE 20. 6 110 2, 266
DQUEUE

Each entry
Task ends 224
DTF interrupt returns 200
TIM interrupt returns 67

• 16.2 7. 954
Each item queued

DTF queueing 110
Interrupts in executive 80 (30% of 267)

24.8 4.712

12. 666

DSPTSK
Interrupt returns 26. 0 267 5. 500
Task start s 19. 8 + AUTASI< 224 4. 435 —

9. 935
÷ 224 AUTASK

Assembler Program s
CEXCPR 6. 0 190 6. 840

RSTART 24. 6 267 6. 568
START 8. 8 224 1. 971
ENDTSK 7. 8 224 1. 747

ENA~BLE 4. 4 200 0. 880
DISABL 4.4 681 2.996

Total 45. 869
Overhead 4. 6%

83

.5- -5. ~~~~~~~~~~~~~~~~~~~~~~~~~~

-

—- - - -
~~
-,- -- 5-

-~~~~~
-
-~~~
—

- ~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ - -:~~~~ ~~~~~~ -

r~~
- -

~~~~~~~~~~~~~~~~~~

-- ---

~~~~~~~~~~~~~~~~~~~~~

- 5-
- - “--—ww-— -—--~ ..’r--

—
3. 1. 7. 4 DSP Baseline Detailed Space Statistics

3. 1. 7. 4. 1 Processor 0
Words

373! Programs

DSPIN T 78
QUEU E 16
DQUEUE 36
DSPTSK 26
ENDTSK 10

Program Data Space 36
202

Assembler Programs

ENABLE / DISABL 8
CEXCPR 6
START /RSTART 18

Machine initialization!
Fault handling 132

164

Data
EXCQ - executive

task queue 6
initialization handler
transfer addresses 32

Machine initialisation !
fault handling 31 69

Total 435

Overhead 1. 3%

3. 1. 7. 4. 2 Processor 1
Words

373! Programs
Same as i~r .~ -essor 0

Assembler Programs
Same as Processor 0 164

Data
Same as Processor 0 69

Total 435

Overhead 1.3%

~~~~~~~~~~~ ~~~~~~~~~~~~~~~ . 

- -

-p -5--—-



—5’ “~~~ ~~~
— - - w.- 

-
___________

f t  
—— . 

— -

3. 1. 7. 5 DSP Sensitivity Analysis

Approximately 40% of the time spent in the dispatcher is spent

in queueing and dequeueing executive tasks . This operation is tr i ggered

at each task completion and each interrupt. These occur at the com-

bined rate of 447 per second in processor 0 and 491 per second in proc-

essor 1 (worst case). Approximately 30% is consumed in restarting

interrupted application tasks, and 20% in starting and fini shing tasks.

The r emaining 10% is consumed in performing the interrupt enable and

disable functions for various J731 programs in the executive.

3. 1. 8 SSM Baseline Statistics

Secondary Storage Management is not implemented.

3. 1. 9 MPL Baseline Statistics

Multiprocessor Locking is not implemented.

3. 1. 10 Bus Traffic

There are two event s which control the amount of activity on the

bus. The fir st is passing control of the bus. This requires sending two

data words , one command word and one status word . In addition , there

is a dei~ y of 57. 2 microseconds each time control is passed. Control

is passed 100 times each second.

The second event causing bus t raff ic  is the transmission of data.

Each transmission causes a command word , status word and the data

word to be sent. There is a transmission for each command word aflo-

cated on calls to SEND. The number of data words sent is derived from

the data associated with each command word.

Each data word requires 20 microseconds to send.

The statistics for each processor are summarized in the following

sections. The transmissions include bot h device and interprocessor

data .

85

I ’

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-5

- -

